"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5>
 
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">introduction</h5>
  
*  volume of figure 8 knot complement<br><math>V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})</math><br>
+
*  volume of figure 8 knot complement<br>
*  what is <math>\zeta_{\mathbb{Q}(\sqrt{-3})}(2)</math>?<br>
+
**  2.02988321281930725<br><math>V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots</math><br>
 +
*  what is <math>\zeta_{\mathbb{Q}(\sqrt{-3})}(2)</math>? numrically 1.285190955484149<br>
  
#  L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]<br> f[x_, y_] :=<br>  L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]<br> Print["five term relation"]<br> Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm<br> N[3 L[Exp[2 I*Pi/3]], 20]<br> N[2 L[Exp[I*Pi/3]], 20]<br> N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]<br>
+
#  L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]<br> f[x_, y_] :=<br>  L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]<br> Print["five term relation"]<br> Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm<br> N[3 L[Exp[2 I*Pi/3]], 20]<br> N[2 L[Exp[I*Pi/3]], 20]<br> N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]<br> N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]<br>
  
 
 
 
 
17번째 줄: 18번째 줄:
  
 
<math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math>
 
<math>\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})</math>
 +
 +
<math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math>
  
 
<math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math>
 
<math>\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))</math>
43번째 줄: 46번째 줄:
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 +
* [http://en.wikipedia.org/wiki/Figure-eight_knot_%28mathematics%29 http://en.wikipedia.org/wiki/Figure-eight_knot_(mathematics)]
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])

2010년 3월 23일 (화) 21:04 판

introduction
  • volume of figure 8 knot complement
    • 2.02988321281930725
      \(V=\frac{9\sqrt{3}}{\pi^2}\zeta_{\mathbb{Q}(\sqrt{-3})}(2)=3D(e^{\frac{2i\pi}{3}})=2D(e^{\frac{i\pi}{3}})=2.029883212819\cdots\)
  • what is \(\zeta_{\mathbb{Q}(\sqrt{-3})}(2)\)? numrically 1.285190955484149
  1. L[x_] := Im[PolyLog[2, x]] + 1/2 Log[Abs[x]] Arg[1 - x]
    f[x_, y_] :=
     L[x] + L[1 - x*y] + L[y] + L[(1 - y)/(1 - x*y)] + L[(1 - x)/(1 - x*y)]
    Print["five term relation"]
    Table[f[i, j], {i, 0.1, 0.9, 0.1}, {j, 0.1, 0.9, 0.1}] // TableForm
    N[3 L[Exp[2 I*Pi/3]], 20]
    N[2 L[Exp[I*Pi/3]], 20]
    N[3 (L[Exp[2 I*Pi/3]] - L[Exp[4 I*Pi/3]])/2, 20]
    N[Pi^2*L[Exp[2 I*Pi/3]]/(3 Sqrt[3]), 20]

 

 

 

복소이차수체의 데데킨트 제타함수

\(\zeta_{K}(2)=\frac{\pi^2}{6\sqrt{|d_K|}}\sum_{(a,d_k)=1} (\frac{d_K}{a})D(e^{2\pi ia/|d_k|})\)

\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\)

\(\zeta_{\mathbb{Q}\sqrt{-7}}(2)=\frac{\pi^2}{3\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))\)

 

 

 

history

 

 

related items

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links