"Six-vertex model and Quantum XXZ Hamiltonian"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
153번째 줄: | 153번째 줄: | ||
* [http://arxiv.org/abs/hep-th/9204064 Diagonalization of the XXZ Hamiltonian by Vertex Operators]<br> | * [http://arxiv.org/abs/hep-th/9204064 Diagonalization of the XXZ Hamiltonian by Vertex Operators]<br> | ||
** Authors: Brian Davies, Omar Foda, Michio Jimbo, Tetsuji Miwa, Atsushi Nakayashiki, 1993 | ** Authors: Brian Davies, Omar Foda, Michio Jimbo, Tetsuji Miwa, Atsushi Nakayashiki, 1993 | ||
− | * E. H. Lieb, [http://link.aps.org/doi/10.1103/PhysRevLett.18.692 Phys. Rev. Letters18, 692 (1967)] | + | * Exact Solution of the Problem of the Entropy of Two-Dimensional Ice<br> |
+ | ** E. H. Lieb, [http://link.aps.org/doi/10.1103/PhysRevLett.18.692 Phys. Rev. Letters18, 692 (1967)] | ||
* Exact Solution of the F Model of An Antiferroelectric<br> | * Exact Solution of the F Model of An Antiferroelectric<br> | ||
** E.H. Lieb. <em style="">Phys. Rev.</em> '''18''' (1967), p. 1046. [http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=3&_originPage=article&_zone=art_page&_targetURL=http%3A%2F%2Fdx.doi.org%2F10.1103%252FPhysRevLett.18.1046&_acct=C000059607&_version=1&_userid=4420&md5=d9763691bc80a397c59ec4e9e3ef0891 Full Text via CrossRef] | ** E.H. Lieb. <em style="">Phys. Rev.</em> '''18''' (1967), p. 1046. [http://www.sciencedirect.com/science?_ob=RedirectURL&_method=outwardLink&_partnerName=3&_originPage=article&_zone=art_page&_targetURL=http%3A%2F%2Fdx.doi.org%2F10.1103%252FPhysRevLett.18.1046&_acct=C000059607&_version=1&_userid=4420&md5=d9763691bc80a397c59ec4e9e3ef0891 Full Text via CrossRef] | ||
164번째 줄: | 165번째 줄: | ||
* One-dimensional chain of anisotropic spin-spin interactions<br> | * One-dimensional chain of anisotropic spin-spin interactions<br> | ||
** C. N. Yang, C. P. Yang, 1966 | ** C. N. Yang, C. P. Yang, 1966 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
− | <h5> | + | <br> |
+ | |||
+ | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">links</h5> | ||
+ | |||
+ | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
+ | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] | ||
+ | * [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * http://functions.wolfram.com/ |
2010년 8월 3일 (화) 09:35 판
introduction
- ice-type model, R model, Rys model
- XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors
- Boltzmann weights
- monodromy matrix
- trace of monodromy matrix is the transfer matrix
- power of transfer matrix becomes the partition function
types of six vertex models
- on a square lattice with periodic boundary conditions
- on a square lattice with domain wall boundary conditions
- this is related to the Alternating sign matrix theorem
transfer matrix
- finding eigenvalues and eigenvectors of transfer matrix is crucial
- Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
- partition function is calculated in terms of the eigenvalues of the transfer matrix
- the below is from Yang-Baxter equation
- transfer matrix is builtup from matrices of Boltzmann weights
- we need the trasfer matrices coming from different set of Boltzman weights commute
- partition function = trace of power of transfer matrices
- so the problem of solving the model is reduced to the computation of this trace
entropy of two-dimensional ice
- entropy is given as
\(Mk\ln W\) where M is the number of molecules and \(W=(4/3)^{3/2}\)
free energy
- \(F=-kT \ln Z\)
partition function
correlation functions
anistropic one-dimensional Heisenberg model
- Heisenberg spin chain model
- XXZ model or XXZ spin chain
- first solved by Bethe
- Yang and Yang
- ground state eigevector for Hamiltonian is a common eigenvector
books
- Exactly Solved Models in Statistical mechanics
- R. J. Baxter, 1982
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Ice-type_model
- http://en.wikipedia.org/wiki/Heisenberg_model_(quantum)
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
blogs
- 구글 블로그 검색
STATISTICAL MECHANICS-A REVIEW OF
SELECTED RIGOROUS RESULTS1•2
By JOEL L. LEBOWITZ
Method for calculating finite size corrections in Bethe ansatz systems: Heisenberg chain and six-vertex model
de Vega, H. J.; Woynarovich, F.
articles
- Integrability of the Quantum XXZ Hamiltonian
- T Miwa, 2009
- Introduction to solvable lattice models in statistical and mathematical physics
- Tetsuo Deguchi, 2003
- Finite Size XXZ Spin Chain with Anisotropy Parameter $\Delta = {1/2}$
- V. Fridkin, Yu. Stroganov, D. Zagier, 2000
- Diagonalization of the XXZ Hamiltonian by Vertex Operators
- Authors: Brian Davies, Omar Foda, Michio Jimbo, Tetsuji Miwa, Atsushi Nakayashiki, 1993
- Exact Solution of the Problem of the Entropy of Two-Dimensional Ice
- E. H. Lieb, Phys. Rev. Letters18, 692 (1967)
- Exact Solution of the F Model of An Antiferroelectric
- E.H. Lieb. Phys. Rev. 18 (1967), p. 1046. Full Text via CrossRef
- Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric
- E.H. Lieb. Phys. Rev. 19 (1967), p. 108. Full Text via CrossRef
- Exact Solution of a Two-Dimensional Model for Hydrogen-Bonded Crystals
- B. Sutherland. Phys. Rev. 19 (1967), p. 103. Full Text via CrossRef
- One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System
- C. N. Yang, C. P. Yang, 1966
- One-dimensional chain of anisotropic spin-spin interactions
- C. N. Yang, C. P. Yang, 1966