"Six-vertex model and Quantum XXZ Hamiltonian"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction==
  
 
* ice-type model, R model, Rys model
 
* ice-type model, R model, Rys model
9번째 줄: 9번째 줄:
 
* power of transfer matrix becomes the partition function
 
* power of transfer matrix becomes the partition function
  
 
+
  
 
+
  
<h5>types of six vertex models</h5>
+
==types of six vertex models==
  
* on a square lattice with periodic boundary conditions
+
* on a square lattice with periodic boundary conditions
*  on a square lattice with domain wall boundary conditions<br>
+
*  on a square lattice with domain wall boundary conditions<br>
** this is related to the [[alternating sign matrix theorem|Alternating sign matrix theorem]]
+
** this is related to the [[alternating sign matrix theorem|Alternating sign matrix theorem]]
  
 
+
  
 
+
  
<h5>transfer matrix</h5>
+
==transfer matrix==
  
* borrowed from [[transfer matrix in statistical mechanics]]
+
* borrowed from [[transfer matrix in statistical mechanics]]
* transfer matrix is builtup from matrices of  Boltzmann weights
+
* transfer matrix is builtup from matrices of Boltzmann weights
 
* finding eigenvalues and eigenvectors of transfer matrix is crucial
 
* finding eigenvalues and eigenvectors of transfer matrix is crucial
 
* Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
 
* Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
* partition function = trace of power of transfer matrices
+
* partition function = trace of power of transfer matrices
* so the partition function  is calculated in terms of the eigenvalues of the transfer matrix
+
* so the partition function is calculated in terms of the eigenvalues of the transfer matrix
  
 
*  then the problem of solving the model is reduced to the computation of this trace<br>
 
*  then the problem of solving the model is reduced to the computation of this trace<br>
  
 
+
 +
==YBE==
 +
*R-matrix $$R(u,\eta)=\rho\left(
 +
\begin{array}{cccc}
 +
\sin (u+\eta ) & 0 & 0 & 0 \\
 +
0 & \sin (u) & \sin (\eta ) & 0 \\
 +
0 & \sin (\eta ) & \sin (u) & 0 \\
 +
0 & 0 & 0 & \sin (u+\eta )
 +
\end{array}
 +
\right)$$
 +
  
 
+
  
 
+
==transfer matrix formalism and coordinate Bethe ansatz==
  
<h5 style="line-height: 2em; margin: 0px;">transfer matrix formalism and coordinate Bethe ansatz</h5>
+
* <math>M=N^{2}</math> number of molecules<br>
 
+
*  one can regard the up(or down) arrows in a row as 'particles'<br>
* <math>M=N^{2}</math> number of molecules<br>
 
*  one can regard the up(or down) arrows in a row as 'particles'<br>
 
 
*  because of the ice rule, their number is conserved and one can try a [[Bethe ansatz]] for the eigenvectors of the transfer matrix<br>
 
*  because of the ice rule, their number is conserved and one can try a [[Bethe ansatz]] for the eigenvectors of the transfer matrix<br>
* <math>f(x_1,\cdots,x_n)</math> be the amplitude in an eigenvector of the state with up arrows at the sites <math> x_1<x_2<\cdots<x_n</math><br>
+
* <math>f(x_ 1,\cdots,x_n)</math> be the amplitude in an eigenvector of the state with up arrows at the sites <math> x_ 1<x_ 2<\cdots<x_n</math><br>
*  obtain the equation for amplitudes <br><math>f(x_1,\cdots,x_n)=\sum_{P}A(P)\exp(i\sum_{j=1}^{n}x_jk_{P_j})</math><br>
+
*  obtain the equation for amplitudes <br><math>f(x_ 1,\cdots,x_n)=\sum_{P}A (P)\exp(i\sum_{j=1}^{n}x_jk _{P_j})</math><br>
*  Bethe ansatz equation for wave numbers : there are n conditions<br><math>\exp(ik_jn)=\prod_{j\neq i}B(k_i,k_j)=\prod_{j=1}^{n}B(k_i,k_j)</math><br> where <br><math>B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}</math><br>
+
*  Bethe ansatz equation for wave numbers : there are n conditions<br><math>\exp(ik_jn)=\prod_{j \n eq i}B(k_i,k_j)=\prod_{j=1}^{n}B(k_i,k_j)</math><br> where <br><math>B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}</math><br>
 
*  eigenvalue<br><math>\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}</math><br>
 
*  eigenvalue<br><math>\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}</math><br>
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">anistropic one-dimensional Heisenberg model (XXZ model)</h5>
+
==anistropic one-dimensional Heisenberg model (XXZ model)==
  
 
* [[Heisenberg spin chain model]]
 
* [[Heisenberg spin chain model]]
*  Hamiltonian of XXZ model or XXZ spin chain with  anisotropic parameter <math>\Delta=1/2</math><br><math>\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)</math><br>
+
*  Hamiltonian of XXZ model or XXZ spin chain with  anisotropic parameter <math>\Delta=1/2</math><br><math>\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)</math><br>
 
*  two body scattering term<br><math>s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}</math><br>
 
*  two body scattering term<br><math>s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}</math><br>
*  equation satisfied by wave numbers<br><math>\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))</math><br> where<br><math>\theta(p,q)</math> is defined as<br><math>\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}</math><br>
+
*  equation satisfied by wave numbers<br><math>\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))</math><br> where<br><math>\theta(p,q)</math> is defined as<br><math>\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}</math><br>
 
*  fundamental equation<br><math>k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)</math><br>
 
*  fundamental equation<br><math>k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)</math><br>
 
*  eigenvalue<br>
 
*  eigenvalue<br>
  
* ground state eigenvector for Hamiltonian  is a common eigenvector although the eigenvalues are different
+
* ground state eigenvector for Hamiltonian is a common eigenvector although the eigenvalues are different
* the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical because both are characterized by the fact that <math>f(x_1,\cdots,x_n)>0</math>
+
* the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical because both are characterized by the fact that <math>f(x_ 1,\cdots,x_n)>0</math>
* see '''[YY1966-2]'''
+
* see '''[YY1966-2]'''
  
 
+
  
 
+
  
 
+
  
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Sutherland's observation</h5>
+
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Sutherland's observation==
  
*  the eigenvectors of the transfer matrix depended on a,b,c only via the parameter<br><math>\Delta=\frac{a^2+b^2-c^2}{2ab}</math><br>
+
*  the eigenvectors of the transfer matrix depended on a,b,c only via the parameter<br><math>\Delta=\frac{a^2+b^2-c^2}{2ab}</math><br>
*  \delta = anistropic parameter in [[Heisenberg spin chain model]]<br>
+
*  \delta = anistropic parameter in [[Heisenberg spin chain model]]<br>
  
 
+
  
 
+
  
<h5>entropy of two-dimensional ice</h5>
+
==entropy of two-dimensional ice==
  
*  entropy is given as<br><math>Mk\ln W</math> where M is the number of molecules and <math>W=(4/3)^{3/2}=1.53960\cdots</math><br>
+
*  entropy is given as<br><math>Mk\ln W</math> where M is the number of molecules and <math>W=(4/3)^{3/2}=1.53960\cdots</math><br>
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">free energy</h5>
+
==free energy==
  
 
* <math>F=-kT \ln Z</math>
 
* <math>F=-kT \ln Z</math>
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">partition function</h5>
+
==partition function==
  
 
+
  
 
+
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">correlation functions</h5>
+
==correlation functions==
  
 
+
  
 
+
  
<h5>related items</h5>
+
==related items==
  
 
* [[Bethe ansatz]]
 
* [[Bethe ansatz]]
116번째 줄: 124번째 줄:
 
* [[2D Yang-Mills gauge theory]]
 
* [[2D Yang-Mills gauge theory]]
  
 
+
  
 
+
  
 
<h5>books</h5>
 
<h5>books</h5>

2012년 10월 14일 (일) 09:42 판

introduction

  • ice-type model, R model, Rys model
  • XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors
  • Boltzmann weights
  • monodromy matrix
  • trace of monodromy matrix is the transfer matrix
  • power of transfer matrix becomes the partition function



types of six vertex models

  • on a square lattice with periodic boundary conditions
  • on a square lattice with domain wall boundary conditions



transfer matrix

  • borrowed from transfer matrix in statistical mechanics
  • transfer matrix is builtup from matrices of Boltzmann weights
  • finding eigenvalues and eigenvectors of transfer matrix is crucial
  • Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
  • partition function = trace of power of transfer matrices
  • so the partition function is calculated in terms of the eigenvalues of the transfer matrix
  • then the problem of solving the model is reduced to the computation of this trace


YBE

  • R-matrix $$R(u,\eta)=\rho\left( \begin{array}{cccc} \sin (u+\eta ) & 0 & 0 & 0 \\ 0 & \sin (u) & \sin (\eta ) & 0 \\ 0 & \sin (\eta ) & \sin (u) & 0 \\ 0 & 0 & 0 & \sin (u+\eta ) \end{array} \right)$$



transfer matrix formalism and coordinate Bethe ansatz

  • \(M=N^{2}\) number of molecules
  • one can regard the up(or down) arrows in a row as 'particles'
  • because of the ice rule, their number is conserved and one can try a Bethe ansatz for the eigenvectors of the transfer matrix
  • \(f(x_ 1,\cdots,x_n)\) be the amplitude in an eigenvector of the state with up arrows at the sites \( x_ 1<x_ 2<\cdots<x_n\)
  • obtain the equation for amplitudes
    \(f(x_ 1,\cdots,x_n)=\sum_{P}A (P)\exp(i\sum_{j=1}^{n}x_jk _{P_j})\)
  • Bethe ansatz equation for wave numbers : there are n conditions
    \(\exp(ik_jn)=\prod_{j \n eq i}B(k_i,k_j)=\prod_{j=1}^{n}B(k_i,k_j)\)
    where
    \(B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}\)
  • eigenvalue
    \(\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}\)



anistropic one-dimensional Heisenberg model (XXZ model)

  • Heisenberg spin chain model
  • Hamiltonian of XXZ model or XXZ spin chain with anisotropic parameter \(\Delta=1/2\)
    \(\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)\)
  • two body scattering term
    \(s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}\)
  • equation satisfied by wave numbers
    \(\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))\)
    where
    \(\theta(p,q)\) is defined as
    \(\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}\)
  • fundamental equation
    \(k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)\)
  • eigenvalue
  • ground state eigenvector for Hamiltonian is a common eigenvector although the eigenvalues are different
  • the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical because both are characterized by the fact that \(f(x_ 1,\cdots,x_n)>0\)
  • see [YY1966-2]




Sutherland's observation==
  • the eigenvectors of the transfer matrix depended on a,b,c only via the parameter
    \(\Delta=\frac{a^2+b^2-c^2}{2ab}\)
  • \delta = anistropic parameter in Heisenberg spin chain model

entropy of two-dimensional ice

  • entropy is given as
    \(Mk\ln W\) where M is the number of molecules and \(W=(4/3)^{3/2}=1.53960\cdots\)



free energy

  • \(F=-kT \ln Z\)



partition function

correlation functions

related items



books

 

 

encyclopedia

 

 

blogs

 

 

STATISTICAL MECHANICS-A REVIEW OF SELECTED RIGOROUS RESULTS

By JOEL L. LEBOWITZ

 

 

Method for calculating finite size corrections in Bethe ansatz systems: Heisenberg chain and six-vertex model
de Vega, H. J.; Woynarovich, F.

 

 

expositions

 

 

articles

 

links