"Six-vertex model and Quantum XXZ Hamiltonian"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
* ice-type model, R model, Rys model
+
* six-vertex model, also called ice-type model, R model, Rys model
 
* XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors
 
* XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors
 
** {{수학노트|url=하이젠베르크_스핀_1/2_XXZ_모형}}
 
** {{수학노트|url=하이젠베르크_스핀_1/2_XXZ_모형}}
* Boltzmann weights
+
* [[Bethe ansatz]] can be applied to solve the model
* monodromy matrix
 
* trace of monodromy matrix is the transfer matrix
 
* power of transfer matrix becomes the partition function
 
  
  
13번째 줄: 10번째 줄:
  
 
* on a square lattice with periodic boundary conditions
 
* on a square lattice with periodic boundary conditions
*  on a square lattice with domain wall boundary conditions<br>
+
*  on a square lattice with domain wall boundary conditions
 
** this is related to the [[alternating sign matrix theorem|Alternating sign matrix theorem]]
 
** this is related to the [[alternating sign matrix theorem|Alternating sign matrix theorem]]
  
21번째 줄: 18번째 줄:
  
 
==transfer matrix==
 
==transfer matrix==
 
 
* borrowed from [[transfer matrix in statistical mechanics]]
 
* borrowed from [[transfer matrix in statistical mechanics]]
* transfer matrix is builtup from matrices of Boltzmann weights
+
* transfer matrix is builtup from matrices of Boltzmann weights
 
* finding eigenvalues and eigenvectors of transfer matrix is crucial
 
* finding eigenvalues and eigenvectors of transfer matrix is crucial
 
* Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
 
* Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
 
* partition function = trace of power of transfer matrices
 
* partition function = trace of power of transfer matrices
 
* so the partition function  is calculated in terms of the eigenvalues of the transfer matrix
 
* so the partition function  is calculated in terms of the eigenvalues of the transfer matrix
*  then the problem of solving the model is reduced to the computation of this trace<br>
+
*  then the problem of solving the model is reduced to the computation of this trace
  
  
43번째 줄: 39번째 줄:
  
 
   
 
   
===R-matrix and Yang-Baxter equation===
+
===R-matrix and Boltzmann weights===
 
* [[R-matrix]]  
 
* [[R-matrix]]  
 
$$
 
$$
59번째 줄: 55번째 줄:
 
==transfer matrix formalism and coordinate Bethe ansatz==
 
==transfer matrix formalism and coordinate Bethe ansatz==
  
* <math>M=N^{2}</math> number of molecules<br>
+
* <math>M=N^{2}</math> number of molecules
*  one can regard the up(or down) arrows in a row as 'particles'<br>
+
*  one can regard the up(or down) arrows in a row as 'particles'
*  because of the ice rule, their number is conserved and one can try a [[Bethe ansatz]] for the eigenvectors of the transfer matrix<br>
+
*  because of the ice rule, their number is conserved and one can try [[Bethe ansatz]] for the eigenvectors of the transfer matrix
* <math>f(x_1,\cdots,x_n)</math> be the amplitude in an eigenvector of the state with up arrows at the sites <math> x_ 1<x_ 2<\cdots<x_n</math><br>
+
* <math>f(x_1,\cdots,x_n)</math> be the amplitude in an eigenvector of the state with up arrows at the sites <math> x_ 1<x_ 2<\cdots<x_n</math>
 
*  obtain the equation for amplitudes :
 
*  obtain the equation for amplitudes :
 
<math>f(x_ 1,\cdots,x_n)=\sum_{P}A (P)\exp(i\sum_{j=1}^{n}x_jk _{P_j})</math>
 
<math>f(x_ 1,\cdots,x_n)=\sum_{P}A (P)\exp(i\sum_{j=1}^{n}x_jk _{P_j})</math>
 
*  Bethe ansatz equation for wave numbers : there are n conditions
 
*  Bethe ansatz equation for wave numbers : there are n conditions
:<math>\exp(ik_jn)=\prod_{j \neq i}B(k_i,k_j)=\prod_{j=1}^{n}B(k_i,k_j)</math><br> where  
+
:<math>\exp(ik_jn)=\prod_{j \neq i}B(k_i,k_j)=\prod_{j=1}^{n}B(k_i,k_j)</math> where  
:<math>B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}</math><br>
+
:<math>B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}</math>
 
*  eigenvalue
 
*  eigenvalue
 
:<math>\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}</math><br>
 
:<math>\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}</math><br>
165번째 줄: 161번째 줄:
 
==articles==
 
==articles==
 
* António, N. Cirilo, N. Manojlović, and Z. Nagy. 2013. “Trigonometric Sl(2) Gaudin Model with Boundary Terms.” arXiv:1303.2481 (March 11). http://arxiv.org/abs/1303.2481.
 
* António, N. Cirilo, N. Manojlović, and Z. Nagy. 2013. “Trigonometric Sl(2) Gaudin Model with Boundary Terms.” arXiv:1303.2481 (March 11). http://arxiv.org/abs/1303.2481.
* Szabo, Richard J, 와/과Miguel Tierz. 2011. “Two-dimensional Yang-Mills theory, Painleve equations and the six-vertex model”. <em>arXiv:1102.3640</em> (2월 17). http://arxiv.org/abs/1102.3640
+
* Szabo, Richard J., and Miguel Tierz. 2011. “Two-Dimensional Yang-Mills Theory, Painleve Equations and the Six-Vertex Model”. ArXiv e-print 1102.3640. http://arxiv.org/abs/1102.3640.
 
* Deguchi, Tetsuo. 2006. “The Six-vertex Model at Roots of Unity and Some Highest Weight Representations of the $\rm Sl_2$ Loop Algebra.” Annales Henri Poincaré. A Journal of Theoretical and Mathematical Physics 7 (7-8): 1531–1540. doi:[http://dx.doi.org/10.1007/s00023-006-0290- 10.1007/s00023-006-0290-8]
 
* Deguchi, Tetsuo. 2006. “The Six-vertex Model at Roots of Unity and Some Highest Weight Representations of the $\rm Sl_2$ Loop Algebra.” Annales Henri Poincaré. A Journal of Theoretical and Mathematical Physics 7 (7-8): 1531–1540. doi:[http://dx.doi.org/10.1007/s00023-006-0290- 10.1007/s00023-006-0290-8]
 
* De Vega, H.J., and F. Woynarovich. 1985. “Method for Calculating Finite Size Corrections in Bethe Ansatz Systems: Heisenberg Chain and Six-vertex Model.” Nuclear Physics B 251: 439–456. doi:10.1016/0550-3213(85)90271-8. http://dx.doi.org/10.1016/0550-3213(85)90271-8
 
* De Vega, H.J., and F. Woynarovich. 1985. “Method for Calculating Finite Size Corrections in Bethe Ansatz Systems: Heisenberg Chain and Six-vertex Model.” Nuclear Physics B 251: 439–456. doi:10.1016/0550-3213(85)90271-8. http://dx.doi.org/10.1016/0550-3213(85)90271-8

2013년 11월 22일 (금) 09:57 판

introduction

  • six-vertex model, also called ice-type model, R model, Rys model
  • XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors
  • Bethe ansatz can be applied to solve the model


types of six vertex models

  • on a square lattice with periodic boundary conditions
  • on a square lattice with domain wall boundary conditions



transfer matrix

  • borrowed from transfer matrix in statistical mechanics
  • transfer matrix is builtup from matrices of Boltzmann weights
  • finding eigenvalues and eigenvectors of transfer matrix is crucial
  • Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
  • partition function = trace of power of transfer matrices
  • so the partition function is calculated in terms of the eigenvalues of the transfer matrix
  • then the problem of solving the model is reduced to the computation of this trace


integrability of the model and the Yang-Baxter equation

  • $T(u)$ transfer matrix
  • $\log T(u)=\sum_{n=0}^{\infty}Q_{n}u^n$
  • here $Q_1$ plays the role of the Hamiltonian
  • necessary and sufficient codntion to have infinitely many conserved quantities

$$[T(u), T(v)]=0$$ which implies $[Q_n,Q_m]=0$


R-matrix and Boltzmann weights

$$ R(u,\eta)=\rho\left( \begin{array}{cccc} \sin (u+\eta ) & 0 & 0 & 0 \\ 0 & \sin (u) & \sin (\eta ) & 0 \\ 0 & \sin (\eta ) & \sin (u) & 0 \\ 0 & 0 & 0 & \sin (u+\eta ) \end{array} \right) $$


transfer matrix formalism and coordinate Bethe ansatz

  • \(M=N^{2}\) number of molecules
  • one can regard the up(or down) arrows in a row as 'particles'
  • because of the ice rule, their number is conserved and one can try Bethe ansatz for the eigenvectors of the transfer matrix
  • \(f(x_1,\cdots,x_n)\) be the amplitude in an eigenvector of the state with up arrows at the sites \( x_ 1<x_ 2<\cdots<x_n\)
  • obtain the equation for amplitudes \[f(x_ 1,\cdots,x_n)=\sum_{P}A (P)\exp(i\sum_{j=1}^{n}x_jk _{P_j})\]
  • Bethe ansatz equation for wave numbers : there are n conditions

\[\exp(ik_jn)=\prod_{j \neq i}B(k_i,k_j)=\prod_{j=1}^{n}B(k_i,k_j)\] where \[B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}\]

  • eigenvalue

\[\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}\]


anistropic one-dimensional Heisenberg model (XXZ model)

\[\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)\]

  • two body scattering term

\[s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}\]

  • equation satisfied by wave numbers

\[\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))\] where \(\theta(p,q)\) is defined as \[\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}\]

  • fundamental equation

\[k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)\]

  • eigenvalue
  • ground state eigenvector for Hamiltonian is a common eigenvector although the eigenvalues are different
  • the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical because both are characterized by the fact that \(f(x_ 1,\cdots,x_n)>0\)
  • see [YY1966-2]




Sutherland's observation

  • the eigenvectors of the transfer matrix depended on a,b,c only via the parameter

\[\Delta=\frac{a^2+b^2-c^2}{2ab}=\cos \eta\]


entropy of two-dimensional ice

  • entropy is given as
    \(Mk\ln W\) where M is the number of molecules and \(W=(4/3)^{3/2}=1.53960\cdots\)



free energy

  • \(F=-kT \ln Z=-\beta \ln Z\)

partition function

correlation functions

computational resource


related items


 

encyclopedia


books


expositions

blogs



articles