"Six-vertex model and Quantum XXZ Hamiltonian"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
158번째 줄: 158번째 줄:
 
* Szabo, Richard J., and Miguel Tierz. 2011. “Two-Dimensional Yang-Mills Theory, Painleve Equations and the Six-Vertex Model”. ArXiv e-print 1102.3640. http://arxiv.org/abs/1102.3640.
 
* Szabo, Richard J., and Miguel Tierz. 2011. “Two-Dimensional Yang-Mills Theory, Painleve Equations and the Six-Vertex Model”. ArXiv e-print 1102.3640. http://arxiv.org/abs/1102.3640.
 
* Deguchi, Tetsuo. 2006. “The Six-vertex Model at Roots of Unity and Some Highest Weight Representations of the $\rm Sl_2$ Loop Algebra.” Annales Henri Poincaré. A Journal of Theoretical and Mathematical Physics 7 (7-8): 1531–1540. doi:[http://dx.doi.org/10.1007/s00023-006-0290- 10.1007/s00023-006-0290-8]
 
* Deguchi, Tetsuo. 2006. “The Six-vertex Model at Roots of Unity and Some Highest Weight Representations of the $\rm Sl_2$ Loop Algebra.” Annales Henri Poincaré. A Journal of Theoretical and Mathematical Physics 7 (7-8): 1531–1540. doi:[http://dx.doi.org/10.1007/s00023-006-0290- 10.1007/s00023-006-0290-8]
* De Vega, H.J., and F. Woynarovich. 1985. “Method for Calculating Finite Size Corrections in Bethe Ansatz Systems: Heisenberg Chain and Six-vertex Model.” Nuclear Physics B 251: 439–456. doi:10.1016/0550-3213(85)90271-8. http://dx.doi.org/10.1016/0550-3213(85)90271-8
+
* De Vega, H.J., and F. Woynarovich. 1985. “Method for Calculating Finite Size Corrections in Bethe Ansatz Systems: Heisenberg Chain and Six-vertex Model.” Nuclear Physics B 251: 439–456. doi:[http://dx.doi.org/10.1016/0550-3213(85)90271-8 10.1016/0550-3213(85)90271-8].
 
* Kazuhiko Minami, [http://dx.doi.org/10.1063/1.2890671 The free energies of six-vertex models and the n-equivalence relation]
 
* Kazuhiko Minami, [http://dx.doi.org/10.1063/1.2890671 The free energies of six-vertex models and the n-equivalence relation]
* [http://dx.doi.org/10.1103/PhysRevLett.18.1046 Exact Solution of the F Model of An Antiferroelectric]
+
* Lieb, Elliott H. 1967. “Exact Solution of the F Model of An Antiferroelectric.” Physical Review Letters 18 (24): 1046–48. doi:[http://dx.doi.org/10.1103/PhysRevLett.18.1046 10.1103/PhysRevLett.18.1046].
** E.H. Lieb. <em style="">Phys. Rev.</em> '''18''' (1967), p. 1046.
+
* Lieb, Elliott H. 1967. “Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric.” Physical Review Letters 19 (3): 108–10. doi:[http://dx.doi.org/10.1103/PhysRevLett.19.108 10.1103/PhysRevLett.19.108].
* [http://dx.doi.org/10.1103/PhysRevLett.19.108 Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric]
+
* Sutherland, Bill. “Exact Solution of a Two-Dimensional Model for Hydrogen-Bonded Crystals.” Physical Review Letters 19, no. 3 (July 17, 1967): 103–4. doi:10.1103/PhysRevLett.19.103.
** E.H. Lieb. <em style="">Phys. Rev.</em> '''19''' (1967), p. 108.
+
* Lieb, Elliott H. “Exact Solution of the Problem of the Entropy of Two-Dimensional Ice.” Physical Review Letters 18, no. 17 (April 24, 1967): 692–94. doi:[http://dx.doi.org/10.1103/PhysRevLett.18.692 10.1103/PhysRevLett.18.692].
* [http://dx.doi.org/10.1103/PhysRevLett.19.103 Exact Solution of a Two-Dimensional Model for Hydrogen-Bonded Crystals]
+
* '''[YY1966-2]''' Yang, C. N., and C. P. Yang.“One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System.” Physical Review 150, no. 1 (October 7, 1966): 327–39. doi:[http://dx.doi.org/10.1103/PhysRev.150.327 10.1103/PhysRev.150.327].
** B. Sutherland. <em style="line-height: 2em;">Phys. Rev.</em> '''19''' (1967), p. 103.
+
* Yang, C. N., and C. P. Yang. “One-Dimensional Chain of Anisotropic Spin-Spin Interactions.” Physics Letters 20, no. 1 (January 15, 1966): 9–10. doi:[http://dx.doi.org/10.1016/0031-9163%2866%2991024-9 10.1016/0031-9163(66)91024-9].
* [http://dx.doi.org/10.1103/PhysRevLett.18.692 Exact Solution of the Problem of the Entropy of Two-Dimensional Ice]
+
* Pauling, Linus. 1935. “The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement.Journal of the American Chemical Society 57 (12): 2680–84. doi:[http://dx.doi.org/10.1021/ja01315a102 10.1021/ja01315a102].
** E. H. Lieb, Phys. Rev. Letters 18, 692 (1967)
 
* '''[YY1966-2]'''[http://dx.doi.org/10.1103/PhysRev.150.327 One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System]
 
** C. N. Yang, C. P. Yang, Phys. Rev. 150, 327 (1966)
 
* [http://dx.doi.org/10.1016/0031-9163%2866%2991024-9 One-dimensional chain of anisotropic spin-spin interactions]
 
** C. N. Yang, C. P. Yang, Phys. Rev. 150, 321 (1966)
 
* [http://dx.doi.org/10.1021/ja01315a102 The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement]
 
** L. Pauling, Journal of the American Chemical Society, Vol. 57, p. 2680 (1935).
 
 
 
  
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[분류:integrable systems]]
 
[[분류:integrable systems]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2014년 4월 13일 (일) 01:14 판

introduction

  • six-vertex model, also called ice-type model, R model, Rys model
  • The Hamiltonian of Hisenberg XXZ spin chain and the six-vertex transfer matrix have the same eigenvectors
  • Bethe ansatz can be applied to solve the model


types of six vertex models

  • on a square lattice with periodic boundary conditions
  • on a square lattice with domain wall boundary conditions


transfer matrix

  • borrowed from transfer matrix in statistical mechanics
  • transfer matrix is builtup from matrices of Boltzmann weights
  • finding eigenvalues and eigenvectors of transfer matrix is crucial
  • Bethe ansatz equation is used to find the eigenvectors and eigenvalues of the transfer matrix
  • partition function = trace of power of transfer matrices
  • so the partition function is calculated in terms of the eigenvalues of the transfer matrix
  • then the problem of solving the model is reduced to the computation of this trace


integrability of the model and the Yang-Baxter equation

  • $T(u)$ transfer matrix
  • $\log T(u)=\sum_{n=0}^{\infty}Q_{n}u^n$
  • here $Q_1$ plays the role of the Hamiltonian
  • necessary and sufficient codntion to have infinitely many conserved quantities

$$[T(u), T(v)]=0$$ which implies $[Q_n,Q_m]=0$


R-matrix and Boltzmann weights

$$ R(u,\eta)=\rho\left( \begin{array}{cccc} \sin (u+\eta ) & 0 & 0 & 0 \\ 0 & \sin (u) & \sin (\eta ) & 0 \\ 0 & \sin (\eta ) & \sin (u) & 0 \\ 0 & 0 & 0 & \sin (u+\eta ) \end{array} \right) $$


transfer matrix formalism and coordinate Bethe ansatz

  • \(M=N^{2}\) number of molecules
  • one can regard the up(or down) arrows in a row as 'particles'
  • because of the ice rule, their number is conserved and one can try Bethe ansatz for the eigenvectors of the transfer matrix
  • let \(f(x_1,\cdots,x_n)\) be the coefficient in an eigenvector $v$ of the state with up arrows at the sites \(x_ 1<x_ 2<\cdots<x_n\) so that

\[v(k_1,\cdots,k_n)= \sum_{\substack{\mathbf{x}=(x_ 1,x_ 2,\cdots,x_n) \\ x_ 1<x_ 2<\cdots<x_n}} f(x_1,\cdots,x_n|k_1,\cdots,k_n)\sigma_{-}^{(x_1)}\cdots\sigma_{-}^{(x_n)}|0\rangle \]

  • Bethe ansatz suggests the following form for $f$

\[f(x_ 1,\cdots,x_n)=\sum_{P\in S_n}A (P)\exp(i\sum_{j=1}^{n}x_jk _{P_j})\]

  • Bethe ansatz equation for wave numbers : there are n conditions

\[\exp(ik_jn)=\prod_{\ell \neq j}B(k_j,k_\ell)=\prod_{\ell=1}^{n}B(k_j,k_\ell),\quad \forall j=1,\cdots, n\] where \[B(k,q)=-\frac{1+e^{ik}e^{iq}-e^{ik}}{1+e^{ik}e^{iq}-e^{iq}}\]

  • eigenvalue $\lambda$ of $v$ is given by

\[\lambda=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{\prod_{j=1}^{n}1-e^{ik_{j}}}=\frac{1+e^{i(k_{1}+\cdots+k_{n})}}{(1-e^{ik_{j}})\cdots(1-e^{ik_{j}})}\]


anistropic one-dimensional Heisenberg XXZ model

\[\hat H = -\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \Delta \sigma_j^z \sigma_{j+1}^z)=-\sum_{j=1}^{N} (\sigma_j^x \sigma_{j+1}^x +\sigma_j^y \sigma_{j+1}^y + \frac{1}{2} \sigma_j^z \sigma_{j+1}^z)\]

  • two body scattering term

\[s_{jl}=1-2\Delta e^{ik_l}+ e^{ik_l+ik_j}=1-e^{ik_l}+ e^{ik_l+ik_j}\]

  • equation satisfied by wave numbers

\[\exp(ik_jN)=(-1)^{N-1}\prod_{l=1}^{N}\exp(-i\theta(k_j,k_l))\] where \(\theta(p,q)\) is defined as \[\exp(-i\theta(p,q))=\frac{1-2\Delta e^{ip}+e^{i(p+q)}}{1-2\Delta e^{iq}+e^{i(p+q)}}=\frac{1-e^{ip}+e^{i(p+q)}}{1- e^{iq}+e^{i(p+q)}}\]

  • fundamental equation

\[k_jN=2\pi I(k_j)+\sum_{l=1}^{N}\theta(k_j,k_l)\]

  • eigenvalue
  • ground state eigenvector for Hamiltonian is a common eigenvector although the eigenvalues are different
  • the maximum eigenstate of the transfer matrix and the ground state of the above Hamiltonian are identical because both are characterized by the fact that \(f(x_ 1,\cdots,x_n)>0\)
  • see [YY1966-2]


Sutherland's observation

  • the eigenvectors of the transfer matrix depended on a,b,c only via the parameter

\[\Delta=\frac{a^2+b^2-c^2}{2ab}=\cos \eta\]


entropy of two-dimensional ice

  • entropy is given as \(Mk\ln W\) where M is the number of molecules and \(W=(4/3)^{3/2}=1.53960\cdots\)



free energy

  • \(F=-kT \ln Z=-\beta \ln Z\)

partition function

correlation functions

computational resource


related items


encyclopedia


books


expositions

blogs



articles

  • António, N. Cirilo, N. Manojlović, and Z. Nagy. 2013. “Trigonometric Sl(2) Gaudin Model with Boundary Terms.” arXiv:1303.2481 (March 11). http://arxiv.org/abs/1303.2481.
  • Szabo, Richard J., and Miguel Tierz. 2011. “Two-Dimensional Yang-Mills Theory, Painleve Equations and the Six-Vertex Model”. ArXiv e-print 1102.3640. http://arxiv.org/abs/1102.3640.
  • Deguchi, Tetsuo. 2006. “The Six-vertex Model at Roots of Unity and Some Highest Weight Representations of the $\rm Sl_2$ Loop Algebra.” Annales Henri Poincaré. A Journal of Theoretical and Mathematical Physics 7 (7-8): 1531–1540. doi:10.1007/s00023-006-0290-8
  • De Vega, H.J., and F. Woynarovich. 1985. “Method for Calculating Finite Size Corrections in Bethe Ansatz Systems: Heisenberg Chain and Six-vertex Model.” Nuclear Physics B 251: 439–456. doi:10.1016/0550-3213(85)90271-8.
  • Kazuhiko Minami, The free energies of six-vertex models and the n-equivalence relation
  • Lieb, Elliott H. 1967. “Exact Solution of the F Model of An Antiferroelectric.” Physical Review Letters 18 (24): 1046–48. doi:10.1103/PhysRevLett.18.1046.
  • Lieb, Elliott H. 1967. “Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric.” Physical Review Letters 19 (3): 108–10. doi:10.1103/PhysRevLett.19.108.
  • Sutherland, Bill. “Exact Solution of a Two-Dimensional Model for Hydrogen-Bonded Crystals.” Physical Review Letters 19, no. 3 (July 17, 1967): 103–4. doi:10.1103/PhysRevLett.19.103.
  • Lieb, Elliott H. “Exact Solution of the Problem of the Entropy of Two-Dimensional Ice.” Physical Review Letters 18, no. 17 (April 24, 1967): 692–94. doi:10.1103/PhysRevLett.18.692.
  • [YY1966-2] Yang, C. N., and C. P. Yang.“One-Dimensional Chain of Anisotropic Spin-Spin Interactions. II. Properties of the Ground-State Energy Per Lattice Site for an Infinite System.” Physical Review 150, no. 1 (October 7, 1966): 327–39. doi:10.1103/PhysRev.150.327.
  • Yang, C. N., and C. P. Yang. “One-Dimensional Chain of Anisotropic Spin-Spin Interactions.” Physics Letters 20, no. 1 (January 15, 1966): 9–10. doi:10.1016/0031-9163(66)91024-9.
  • Pauling, Linus. 1935. “The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement.” Journal of the American Chemical Society 57 (12): 2680–84. doi:10.1021/ja01315a102.