"Kazhdan-Lusztig conjecture"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
10번째 줄: | 10번째 줄: | ||
==Hecke algebra== | ==Hecke algebra== | ||
+ | * basis of Hecke algebra $\{H_{x}| x\in W\}$ | ||
* new basis of Hecke algebra $\{\underline{H}_{x}| x\in W\}$ | * new basis of Hecke algebra $\{\underline{H}_{x}| x\in W\}$ | ||
$$ | $$ | ||
16번째 줄: | 17번째 줄: | ||
where $h_{y,x}\in v\mathbb{Z}[v]$ is so called the Kazhdan-Lusztig polynomial | where $h_{y,x}\in v\mathbb{Z}[v]$ is so called the Kazhdan-Lusztig polynomial | ||
* positivity conjecture : $h_{x,y}\in \mathbb{Z}_{\geq 0}[v]$ | * positivity conjecture : $h_{x,y}\in \mathbb{Z}_{\geq 0}[v]$ | ||
− | |||
− | |||
==Hodge theory== | ==Hodge theory== |
2016년 5월 2일 (월) 22:20 판
introduction
- The Kazhdan-Lusztig theory provides the solution to the problem of determining the irreducible characters in the BGG category $\mathcal{O}$ of semisimple Lie algebras ([KL], [BB], [BK]).
- The theory was originally formulated in terms of the canonical bases (i.e., Kazhdan-Lusztig bases) of Hecke algebras.
- 1979 conjectures
- KL character formula
- KL positivity conjecture
- Kazhdan-Lusztig polynomial
Hecke algebra
- basis of Hecke algebra $\{H_{x}| x\in W\}$
- new basis of Hecke algebra $\{\underline{H}_{x}| x\in W\}$
$$ \underline{H}_{x}=H_{x}+\sum_{y\in W, \ell(y)<\ell(x)} h_{y,x}H_{y} $$ where $h_{y,x}\in v\mathbb{Z}[v]$ is so called the Kazhdan-Lusztig polynomial
- positivity conjecture : $h_{x,y}\in \mathbb{Z}_{\geq 0}[v]$
Hodge theory
- Poincare duality
- hard Lefshetz theorem
- Hodge-Riemann bilinear relation
- BGG category
- Hecke algebra
- Enumerative problems and Schubert calculus
- Flag manifold and flag variety
exposition
articles
- [BB] A. Beilinson and J. Bernstein, Localisation de $\mathfrak g$-modules, C.R. Acad. Sci. Paris Ser. I Math. 292 (1981), 15-18.
- [BK] J.L.Brylinski and M.Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), 387-410.
- [KL] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184.