"Gabriel's theorem"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
4번째 줄: 4번째 줄:
  
 
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots}
 
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots}
$$M \to \dim M$$
+
:<math>M \to \dim M</math>
where $\dim$ is dimension vector
+
where <math>\dim</math> is dimension vector
  
 
 
 
 

2020년 11월 16일 (월) 04:36 판

statement

thm (Gabriel)

A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots} \[M \to \dim M\] where \(\dim\) is dimension vector

 

 

idea of proof

  • define tilting functor
  • get Coxeter element

 


Kac theorem

related items

expositions