"Mahler measure"의 두 판 사이의 차이
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
+ | * for a Laurent polynomial $P(x_1,\cdots, x_n)\in \mathbb{Z}[x_1^{\pm 1},\cdots,x_n^{\pm 1}$, the Mahler measure is defined to be | ||
+ | $$ | ||
+ | m(P):=\int_{0}^{1}\cdots \int_{0}^{1} \ln |P(e^{2\pi i \theta_1},\cdots, e^{2\pi i \theta_n})|\, d\theta_1\cdots d\theta_n | ||
+ | $$ | ||
+ | |||
+ | ==examples== | ||
+ | ===Smyth=== | ||
+ | $$ | ||
+ | m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L_{-3}(2)=0.3230659472\cdots | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots | ||
+ | $$ | ||
+ | |||
+ | |||
+ | ===Rodriguez-Villegas=== | ||
+ | $$ | ||
+ | m(1+x_1+x_2+x_3+x_4)=-L_{f}'(-1)=\frac{675\sqrt{15}}{16\pi^5}L_{f}(4)=0.5444125617\cdots | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | m(1+x_1+x_2+x_3+x_4+x_5)=-8L_{g}'(-1)=\frac{648}{\pi^6}L_{g}(5)=0.6273170748\cdots | ||
+ | $$ | ||
+ | where | ||
+ | $$ | ||
+ | f(\tau)=\eta(3\tau)^3\eta(5\tau)^3+\eta(\tau)^3\eta(15\tau)^3 | ||
+ | $$ | ||
+ | and | ||
+ | $$ | ||
+ | g(\tau)=\eta(\tau)^2\eta(2\tau)^2\eta(3\tau)^2\eta(6\tau)^2 | ||
+ | $$ | ||
+ | |||
+ | |||
+ | ===Deninger=== | ||
+ | $$ | ||
+ | m(1+x+\frac{1}{x}+y+\frac{1}{y})=L_{15A}'(0)=\frac{15}{4\pi^2}L_{15A}(2)=0.2513304337\cdots | ||
+ | $$ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ===Boyd=== | ||
+ | $$ | ||
+ | m(1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{14A}'(0)=\frac{7}{2\pi^2}L_{14A}(2)=0.2274812230\cdots | ||
+ | $$ | ||
21번째 줄: | 67번째 줄: | ||
==expositions== | ==expositions== | ||
+ | * Smyth, Chris. 2008. “The Mahler Measure of Algebraic Numbers: a Survey.” In Number Theory and Polynomials, 352:322–349. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press. http://www.maths.ed.ac.uk/~chris/Smyth240707.pdf | ||
* Matilde N. Laln [http://www.math.ualberta.ca/%7Emlalin/ubc.pdf Mahler measures as values of regulators] 2006 | * Matilde N. Laln [http://www.math.ualberta.ca/%7Emlalin/ubc.pdf Mahler measures as values of regulators] 2006 | ||
* Finch, [http://www.people.fas.harvard.edu/~sfinch/csolve/frs.pdf Modular Forms on $SL_2(\mathbb{Z})$] 2005 | * Finch, [http://www.people.fas.harvard.edu/~sfinch/csolve/frs.pdf Modular Forms on $SL_2(\mathbb{Z})$] 2005 |
2013년 8월 27일 (화) 07:32 판
introduction
- for a Laurent polynomial $P(x_1,\cdots, x_n)\in \mathbb{Z}[x_1^{\pm 1},\cdots,x_n^{\pm 1}$, the Mahler measure is defined to be
$$ m(P):=\int_{0}^{1}\cdots \int_{0}^{1} \ln |P(e^{2\pi i \theta_1},\cdots, e^{2\pi i \theta_n})|\, d\theta_1\cdots d\theta_n $$
examples
Smyth
$$ m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L_{-3}(2)=0.3230659472\cdots $$
$$ m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots $$
Rodriguez-Villegas
$$ m(1+x_1+x_2+x_3+x_4)=-L_{f}'(-1)=\frac{675\sqrt{15}}{16\pi^5}L_{f}(4)=0.5444125617\cdots $$
$$ m(1+x_1+x_2+x_3+x_4+x_5)=-8L_{g}'(-1)=\frac{648}{\pi^6}L_{g}(5)=0.6273170748\cdots $$ where $$ f(\tau)=\eta(3\tau)^3\eta(5\tau)^3+\eta(\tau)^3\eta(15\tau)^3 $$ and $$ g(\tau)=\eta(\tau)^2\eta(2\tau)^2\eta(3\tau)^2\eta(6\tau)^2 $$
Deninger
$$ m(1+x+\frac{1}{x}+y+\frac{1}{y})=L_{15A}'(0)=\frac{15}{4\pi^2}L_{15A}(2)=0.2513304337\cdots $$
Boyd
$$ m(1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{14A}'(0)=\frac{7}{2\pi^2}L_{14A}(2)=0.2274812230\cdots $$
computational resource
- https://docs.google.com/file/d/0B8XXo8Tve1cxb0REMDN0WW05N1k/edit
- http://mathworld.wolfram.com/LehmersMahlerMeasureProblem.html
- http://mathworld.wolfram.com/MahlerMeasure.html
encyclopedia
expositions
- Smyth, Chris. 2008. “The Mahler Measure of Algebraic Numbers: a Survey.” In Number Theory and Polynomials, 352:322–349. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press. http://www.maths.ed.ac.uk/~chris/Smyth240707.pdf
- Matilde N. Laln Mahler measures as values of regulators 2006
- Finch, Modular Forms on $SL_2(\mathbb{Z})$ 2005
- The many aspects of Mahler's measure, Banff workshop, 2003
- Boyd, Mahler's measure, hyperbolic geometry and the dilogarithm 2002
articles
- Zudilin, Wadim. 2013. “Regulator of Modular Units and Mahler Measures”. ArXiv e-print 1304.3869. http://arxiv.org/abs/1304.3869.
- A dynamical interpretation of the global canonical height on an elliptic curve
- Mahler's Measure and the Dilogarithm (I)
- Mahler's Measure and the Dilogarithm (II)
- Authors: David W. Boyd, Fernando Rodriguez-Villegas, Nathan M. Dunfield
- C. J. Smyth, An explicit formula for the Mahler measure of a family of 3-variable polynomials, J. Th. Nombres Bordeaux 14 (2002), 683{700