"Mahler measure"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
46번째 줄: 46번째 줄:
 
$$
 
$$
 
m(1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{14A}'(0)=\frac{7}{2\pi^2}L_{14A}(2)=0.2274812230\cdots
 
m(1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{14A}'(0)=\frac{7}{2\pi^2}L_{14A}(2)=0.2274812230\cdots
 +
$$
 +
 +
$$
 +
m(-1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{30A}'(0)=\frac{15}{2\pi^2}L_{30A}(2)=0.6168709387\cdots
 
$$
 
$$
  
64번째 줄: 68번째 줄:
 
* http://en.wikipedia.org/wiki/Mahler_measure
 
* http://en.wikipedia.org/wiki/Mahler_measure
  
 +
  
  
72번째 줄: 77번째 줄:
 
* [http://www.birs.ca/workshops/2003/03w5035/ The many aspects of Mahler's measure], Banff workshop, 2003
 
* [http://www.birs.ca/workshops/2003/03w5035/ The many aspects of Mahler's measure], Banff workshop, 2003
 
* Boyd, [http://www.math.ca/notes/v34/n2/Notesv34n2.pdf Mahler's measure, hyperbolic geometry and the dilogarithm] 2002
 
* Boyd, [http://www.math.ca/notes/v34/n2/Notesv34n2.pdf Mahler's measure, hyperbolic geometry and the dilogarithm] 2002
 +
 +
 +
 +
===lecture notes===
 +
 +
*  Course at Harvard University Spring 2002.<br>
 +
* '''Fernando Rodriguez Villegas'''http://www.ma.utexas.edu/users/villegas/KL/<br>
 +
*  Suggested '''[http://www.ma.utexas.edu/users/villegas/KL/periods.dvi exercises]''' on periods.<br>
 +
*  Notes last updated: May 14, 2002.<br>
 +
*  The following are class notes taken by Sam Vandervelde (samv@mandelbrot.org). Please let me or Sam know of any comments, corrections, etc. Thanks.<br>
 +
* [[3313085/attachments/2687571|sam-notes-1-1.pdf]]
 +
* [[3313085/attachments/2687571|3313085/attachments/2687571]] [[3313085/attachments/2687573|sam-notes-2.pdf]]
 +
* [[3313085/attachments/2687575|sam-notes-3.pdf]]
 +
* [[3313085/attachments/2687577|sam-notes-4.pdf]]
 +
* [[3313085/attachments/2687579|sam-notes-5.pdf]]
 +
* '''[http://www.ma.utexas.edu/users/villegas/KL/sam-notes-1.dvi Notes 1]'''
 +
* '''[http://www.ma.utexas.edu/users/villegas/KL/sam-notes-2.dvi Notes 2]'''
 +
* '''[http://www.ma.utexas.edu/users/villegas/KL/sam-notes-3.dvi Notes 3]'''
 +
* '''[http://www.ma.utexas.edu/users/villegas/KL/sam-notes-4.dvi Notes 4]'''
 +
* '''[http://www.ma.utexas.edu/users/villegas/KL/sam-notes-5.dvi Notes 5]'''
 +
*  The following are class notes taken by Matilde Lalin (mlalin@math.harvard.edu). Please let me or Matilde know of any comments, corrections, etc. Thanks.<br>
 +
* '''[http://www.ma.utexas.edu/users/villegas/KL/KL.ps Notes 6]'''
  
 
   
 
   
94번째 줄: 121번째 줄:
 
[[분류:개인노트]]
 
[[분류:개인노트]]
 
[[Category:research topics]]
 
[[Category:research topics]]
 +
[[분류:dilogarithm]]

2013년 8월 27일 (화) 07:36 판

introduction

  • for a Laurent polynomial $P(x_1,\cdots, x_n)\in \mathbb{Z}[x_1^{\pm 1},\cdots,x_n^{\pm 1}$, the Mahler measure is defined to be

$$ m(P):=\int_{0}^{1}\cdots \int_{0}^{1} \ln |P(e^{2\pi i \theta_1},\cdots, e^{2\pi i \theta_n})|\, d\theta_1\cdots d\theta_n $$


examples

Smyth

$$ m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L_{-3}(2)=0.3230659472\cdots $$

$$ m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots $$


Rodriguez-Villegas

$$ m(1+x_1+x_2+x_3+x_4)=-L_{f}'(-1)=\frac{675\sqrt{15}}{16\pi^5}L_{f}(4)=0.5444125617\cdots $$

$$ m(1+x_1+x_2+x_3+x_4+x_5)=-8L_{g}'(-1)=\frac{648}{\pi^6}L_{g}(5)=0.6273170748\cdots $$ where $$ f(\tau)=\eta(3\tau)^3\eta(5\tau)^3+\eta(\tau)^3\eta(15\tau)^3 $$ and $$ g(\tau)=\eta(\tau)^2\eta(2\tau)^2\eta(3\tau)^2\eta(6\tau)^2 $$


Deninger

$$ m(1+x+\frac{1}{x}+y+\frac{1}{y})=L_{15A}'(0)=\frac{15}{4\pi^2}L_{15A}(2)=0.2513304337\cdots $$



Boyd

$$ m(1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{14A}'(0)=\frac{7}{2\pi^2}L_{14A}(2)=0.2274812230\cdots $$

$$ m(-1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{30A}'(0)=\frac{15}{2\pi^2}L_{30A}(2)=0.6168709387\cdots $$


related items

computational resource


encyclopedia



expositions


lecture notes


articles



links