"Mahler measure"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
22번째 줄: 22번째 줄:
 
m(1+x_1+x_2+x_3+x_4)=-L_{f}'(-1)=\frac{675\sqrt{15}}{16\pi^5}L_{f}(4)=0.5444125617\cdots
 
m(1+x_1+x_2+x_3+x_4)=-L_{f}'(-1)=\frac{675\sqrt{15}}{16\pi^5}L_{f}(4)=0.5444125617\cdots
 
$$
 
$$
 +
* A conjecture due to F. Rodriguez-Villegas represents this Mahler measure as a special value at the point 4 of the L-function of a modular modular form of weight 3. We prove that this Mahler measure is equal to a linear combination of double L-values of certain meromorphic modular forms of weight 4.
  
 
$$
 
$$
112번째 줄: 113번째 줄:
 
==articles==
 
==articles==
 
* Zudilin, Wadim. 2013. “Regulator of Modular Units and Mahler Measures”. ArXiv e-print 1304.3869. http://arxiv.org/abs/1304.3869.
 
* Zudilin, Wadim. 2013. “Regulator of Modular Units and Mahler Measures”. ArXiv e-print 1304.3869. http://arxiv.org/abs/1304.3869.
 +
* Shinder, Evgeny, and Masha Vlasenko. 2012. “Linear Mahler Measures and Double L-Values of Modular Forms.” arXiv:1206.1454 [math]. http://arxiv.org/abs/1206.1454.
 
* A dynamical interpretation of the global canonical height on an elliptic curve
 
* A dynamical interpretation of the global canonical height on an elliptic curve
 
* [http://www.smc.math.ca/cjm/v54/p468 Mahler's Measure and the Dilogarithm (I)]
 
* [http://www.smc.math.ca/cjm/v54/p468 Mahler's Measure and the Dilogarithm (I)]

2014년 2월 15일 (토) 16:22 판

introduction

  • for a Laurent polynomial $P(x_1,\cdots, x_n)\in \mathbb{Z}[x_1^{\pm 1},\cdots,x_n^{\pm 1}]$, the Mahler measure is defined to be

$$ m(P):=\int_{0}^{1}\cdots \int_{0}^{1} \ln |P(e^{2\pi i \theta_1},\cdots, e^{2\pi i \theta_n})|\, d\theta_1\cdots d\theta_n $$


examples

Smyth

  • 1981

$$ m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L_{-3}(2)=0.3230659472\cdots $$

$$ m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots $$


Rodriguez-Villegas

$$ m(1+x_1+x_2+x_3+x_4)=-L_{f}'(-1)=\frac{675\sqrt{15}}{16\pi^5}L_{f}(4)=0.5444125617\cdots $$

  • A conjecture due to F. Rodriguez-Villegas represents this Mahler measure as a special value at the point 4 of the L-function of a modular modular form of weight 3. We prove that this Mahler measure is equal to a linear combination of double L-values of certain meromorphic modular forms of weight 4.

$$ m(1+x_1+x_2+x_3+x_4+x_5)=-8L_{g}'(-1)=\frac{648}{\pi^6}L_{g}(5)=0.6273170748\cdots $$ where $$ f(\tau)=\eta(3\tau)^3\eta(5\tau)^3+\eta(\tau)^3\eta(15\tau)^3 $$ and $$ g(\tau)=\eta(\tau)^2\eta(2\tau)^2\eta(3\tau)^2\eta(6\tau)^2 $$


Deninger

$$ m(1+x+\frac{1}{x}+y+\frac{1}{y})=L_{15A}'(0)=\frac{15}{4\pi^2}L_{15A}(2)=0.2513304337\cdots $$



Boyd

$$ m(1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{14A}'(0)=\frac{7}{2\pi^2}L_{14A}(2)=0.2274812230\cdots $$

$$ m(-1+x+\frac{1}{x}+y+\frac{1}{y}+xy+\frac{1}{xy})=L_{30A}'(0)=\frac{15}{2\pi^2}L_{30A}(2)=0.6168709387\cdots $$


related items


computational resource


encyclopedia



expositions



lecture notes


articles



links