"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
6번째 줄: 6번째 줄:
 
:<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math>
 
:<math>d_i^2=1+d_{i-1}d_{i+1}</math> where <math>d_0=1</math>, <math>d_k=1</math>
  
 
+
  
 
==diagonals of regular polygon==
 
==diagonals of regular polygon==
12번째 줄: 12번째 줄:
 
:<math>d_i = \frac{\sin (\pi  (i+1)/7)}{\sin (\pi/7)} </math>
 
:<math>d_i = \frac{\sin (\pi  (i+1)/7)}{\sin (\pi/7)} </math>
  
 
+
  
 
==chebyshev polynomials==
 
==chebyshev polynomials==
19번째 줄: 19번째 줄:
 
* http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity
 
* http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html also obey the interesting [http://mathworld.wolfram.com/Determinant.html determinant] identity
  
 
+
  
 
+
  
 
==related items==
 
==related items==
27번째 줄: 27번째 줄:
 
* [[sl(2) - orthogonal polynomials and Lie theory]]
 
* [[sl(2) - orthogonal polynomials and Lie theory]]
  
 
+
  
 
+
  
 
==articles==
 
==articles==

2020년 12월 28일 (월) 04:01 기준 최신판

introduction

\[d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}\] satisfies \[d_i^2=1+d_{i-1}d_{i+1}\] where \(d_0=1\), \(d_k=1\)


diagonals of regular polygon

  • length of hepagon

\[d_i = \frac{\sin (\pi (i+1)/7)}{\sin (\pi/7)} \]


chebyshev polynomials



related items



articles