"Dual reductive pair"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(→‎메타데이터: 새 문단)
20번째 줄: 20번째 줄:
 
[[분류:theta]]
 
[[분류:theta]]
 
[[분류:migrate]]
 
[[분류:migrate]]
 +
 +
== 메타데이터 ==
 +
 +
===위키데이터===
 +
* ID :  [https://www.wikidata.org/wiki/Q7306388 Q7306388]

2020년 12월 28일 (월) 00:15 판

introduciton

  • In the mid-1970s, Howe introduced the notion of dual pairs in \(Mp(W)\): these are subgroups of \(Mp(W)\) of the form \(G \times H\) where \(G\) and \(H\) are mutual centralisers of each other.
  • He gave a classification and construction of all such possible dual pairs. They basically take the following form:
  • (i) if \(U\) is a quadratic space with corresponding orthogonal group \(O(U)\) and \(V\) a symplectic space with corresponding metaplectic group \(Mp(V)\), then \(W = U \otimes V\) is naturally a symplectic space, and \(O(U)\times Mp(V)\) is a dual pair in \(Mp(W) = Mp(U \otimes V)\).
  • (ii) \(U(V)\times U(V')\), where \(V\) and \(V'\) are Hermitian and skew-Hermitian spaces respectively for a quadratic extension \(E/F\).
  • (iii) \(GL(U) \times GL(V)\), where \(U\) and \(V\) are vector spaces over \(F\).
  • The dual pairs in (i) and (ii) are called Type I dual pairs, while those in (iii) are called Type II.

Type II dual pairs

  • It is particularly easy to describe the Weil representation \(\Omega\) for Type II dual pairs.
  • The group \(GL(U) \times GL(V)\) acts naturally on \(U \otimes V\) and hence on the space \(S(U \otimes V)\) of Schwarz functions: this is the Weil representation \(\Omega\).


related items

메타데이터

위키데이터