"Gabriel's theorem"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
||
35번째 줄: | 35번째 줄: | ||
[[분류:math]] | [[분류:math]] | ||
[[분류:migrate]] | [[분류:migrate]] | ||
+ | |||
+ | == 메타데이터 == | ||
+ | |||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q5515505 Q5515505] |
2020년 12월 26일 (토) 05:56 판
statement
- thm (Gabriel)
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots} \[M \to \dim M\] where \(\dim\) is dimension vector
idea of proof
- define tilting functor
- get Coxeter element
Kac theorem
expositions
- Carroll, Gabriel's Theorem
메타데이터
위키데이터
- ID : Q5515505