"Jacobian Conjecture"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==introduction== * Let y=F(z) a polynomial system in C^n. The Jacobian Conjecture (JC) states that F is invertible, and its inverse is polynomial, if and only if the determinant of th...)
 
imported>Pythagoras0
(section 'memo' added)
5번째 줄: 5번째 줄:
  
 
* De Goursac, A., A. Sportiello, and A. Tanasa. ‘Degree Reduction in the Jacobian Conjecture, a Combinatorial Quantum Field Theoretical Approach’. arXiv:1411.6558 [hep-Th], 17 November 2014. http://arxiv.org/abs/1411.6558.
 
* De Goursac, A., A. Sportiello, and A. Tanasa. ‘Degree Reduction in the Jacobian Conjecture, a Combinatorial Quantum Field Theoretical Approach’. arXiv:1411.6558 [hep-Th], 17 November 2014. http://arxiv.org/abs/1411.6558.
 +
 +
== memo ==
 +
 +
* Yucai Su, Keller maps and 2-dimensional Jacobi conjecture, http://arxiv.org/abs/1603.01867v1

2016년 3월 8일 (화) 00:18 판

introduction

  • Let y=F(z) a polynomial system in C^n. The Jacobian Conjecture (JC) states that F is invertible, and its inverse is polynomial, if and only if the determinant of the Jacobian matrix J_F(z) = (d F_j(z)/d z_i)_{i,j=1..n} is a non-zero constant.
  • what is the set of automorphisms of an affine space? Jacobian conjecture is about the polynomial automorphisms whose jacobians are constant.


  • De Goursac, A., A. Sportiello, and A. Tanasa. ‘Degree Reduction in the Jacobian Conjecture, a Combinatorial Quantum Field Theoretical Approach’. arXiv:1411.6558 [hep-Th], 17 November 2014. http://arxiv.org/abs/1411.6558.

memo