"Complete reducibility"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
3번째 줄: | 3번째 줄: | ||
** Use Casimir operator | ** Use Casimir operator | ||
* Casimir exists because invariant symmetric non-degenerated bilinear form exists. | * Casimir exists because invariant symmetric non-degenerated bilinear form exists. | ||
− | * | + | |
+ | |||
+ | ==related items== | ||
+ | * [[Sugawara construction]] | ||
+ | |||
+ | |||
+ | ==expositions== | ||
+ | * Iachello, Francesco. “Casimir Operators and Their Eigenvalues.” In Lie Algebras and Applications, 63–74. Lecture Notes in Physics 708. Springer Berlin Heidelberg, 2006. http://link.springer.com.ezproxy.library.uq.edu.au/chapter/10.1007/3-540-36239-8_5. | ||
+ | |||
[[분류:Lie theory]] | [[분류:Lie theory]] |
2015년 3월 9일 (월) 05:56 판
- two approaches
- Weyl's unitarian trick
- Use Casimir operator
- Casimir exists because invariant symmetric non-degenerated bilinear form exists.
expositions
- Iachello, Francesco. “Casimir Operators and Their Eigenvalues.” In Lie Algebras and Applications, 63–74. Lecture Notes in Physics 708. Springer Berlin Heidelberg, 2006. http://link.springer.com.ezproxy.library.uq.edu.au/chapter/10.1007/3-540-36239-8_5.