"Bernstein polynomial"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
Pythagoras0 (토론 | 기여)  (→메타데이터:  새 문단)  | 
				Pythagoras0 (토론 | 기여)   | 
				||
| 14번째 줄: | 14번째 줄: | ||
  <references />  |   <references />  | ||
| − | == 메타데이터 ==  | + | ==메타데이터==  | 
| − | |||
===위키데이터===  | ===위키데이터===  | ||
* ID :  [https://www.wikidata.org/wiki/Q826841 Q826841]  | * ID :  [https://www.wikidata.org/wiki/Q826841 Q826841]  | ||
| + | ===Spacy 패턴 목록===  | ||
| + | * [{'LOWER': 'bernstein'}, {'LEMMA': 'polynomial'}]  | ||
2021년 2월 16일 (화) 23:50 기준 최신판
노트
위키데이터
- ID : Q826841
 
말뭉치
- Recently the Bernstein polynomials have been defined and studied in many different ways, for example, by q-series, by complex functions, by p-adic Volkenborn integrals, and many algorithms (cf.[1]
 - The Bernstein polynomial bases vanish except the first polynomial at , which is equal to 1 and the last polynomial at , which is also equal to 1 over the interval .[2]
 - Many properties of the Bézier curves and surfaces come from the properties of the Bernstein polynomials.[2]
 - Due to the increasing interest on Bernstein polynomials, the question arises of how to describe their properties in terms of their coefficients when they are given in the Bernstein basis.[2]
 - Up to now, and to the best of our Knowledge, many formulae corresponding to those mentioned previously are unknown and are traceless in the literature for Bernstein polynomials.[2]
 - Bernstein polynomials can be generalized to k dimensions.[3]
 - The Bernstein polynomials of degree form a basis for the power polynomials of degree .[4]
 
소스
메타데이터
위키데이터
- ID : Q826841
 
Spacy 패턴 목록
- [{'LOWER': 'bernstein'}, {'LEMMA': 'polynomial'}]