"Gabriel's theorem"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| Pythagoras0 (토론 | 기여)  (→메타데이터:  새 문단) | Pythagoras0 (토론 | 기여)  | ||
| 3번째 줄: | 3번째 줄: | ||
| ;thm (Gabriel) | ;thm (Gabriel) | ||
| − | A connected quiver Q has finite type iff the underlying graph is a Dynkin  | + | A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots} | 
| :<math>M \to \dim M</math> | :<math>M \to \dim M</math> | ||
| where <math>\dim</math> is dimension vector | where <math>\dim</math> is dimension vector | ||
| − | + | ||
| − | + | ||
| ==idea of proof== | ==idea of proof== | ||
| 16번째 줄: | 16번째 줄: | ||
| * get Coxeter element | * get Coxeter element | ||
| − | + | ||
2020년 12월 28일 (월) 05:26 판
statement
- thm (Gabriel)
A connected quiver Q has finite type iff the underlying graph is a Dynkin diagram of (A,D,E) type. Moreoever there is a bijection between {indecomposable kQ-modules} and {positive roots} \[M \to \dim M\] where \(\dim\) is dimension vector
 
 
idea of proof
- define tilting functor
- get Coxeter element
 
Kac theorem
expositions
- Carroll, Gabriel's Theorem
메타데이터
위키데이터
- ID : Q5515505