"영 태블로(Young tableau)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) (→메타데이터) |
Pythagoras0 (토론 | 기여) |
||
243번째 줄: | 243번째 줄: | ||
* Carsten Schneider, Robin Sulzgruber, Asymptotic and exact results on the complexity of the Novelli--Pak--Stoyanovskii algorithm, arXiv:1606.07597 [math.CO], June 24 2016, http://arxiv.org/abs/1606.07597 | * Carsten Schneider, Robin Sulzgruber, Asymptotic and exact results on the complexity of the Novelli--Pak--Stoyanovskii algorithm, arXiv:1606.07597 [math.CO], June 24 2016, http://arxiv.org/abs/1606.07597 | ||
− | == 메타데이터 == | + | ==메타데이터== |
− | |||
===위키데이터=== | ===위키데이터=== | ||
* ID : [https://www.wikidata.org/wiki/Q2166280 Q2166280] | * ID : [https://www.wikidata.org/wiki/Q2166280 Q2166280] | ||
+ | ===Spacy 패턴 목록=== | ||
+ | * [{'LOWER': 'young'}, {'LEMMA': 'tableau'}] | ||
+ | * [{'LOWER': 'young'}, {'LEMMA': 'diagram'}] |
2021년 2월 17일 (수) 02:29 기준 최신판
개요
- 영 다이어그램 또는 Ferrers Diagram
영 다이어그램
- 자연수 \(d\)의 분할 \[\lambda: \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\geq 0\,; \lambda_1+\cdots+\lambda_n=d\]
에 대응되는 다이어그램
- 7의 분할 \((4,2,1)\)의 경우, 영 다이어그램은 다음과 같다
\[ \begin{array}{cccc} \square & \square & \square & \square \\ \square & \square & \text{} & \text{} \\ \square & \text{} & \text{} & \text{} \end{array} \]
영 태블로
- 자연수의 분할에 대응되는 영 다이어그램 \(\lambda\)에 있는 상자에, 적당한 원소를 채워넣어 얻어진다
표준 영 태블로
- 주어진 자연수 \(n\)의 분할에 대응되는 영 다이어그램 \(\lambda\)에 있는 \(n\)개의 상자에, \(\{1,2,\cdots,n\}\)의 원소을 채워넣어 얻어진다
- 영 태블로의 각 행과 열을 따라 수가 강하게 증가(strictly increasing)할 때 이를 표준 영 태블로(standard Young tableau)라 한다
- 대칭군 (symmetric group) \(S_n\)의 \(\lambda\)에 대응되는 기약표현의 기저와 대응된다
- 주어진 분할에 대한 표준 영 태블로의 개수는 갈고리 길이 공식 (hook length formula)으로 주어진다
준표준 영 태블로
- 자연수 \(N\)의 분할에 대응되는 영 다이어그램 \(\lambda\)에 있는 \(N\)개의 상자에, \(\{1,2,\cdots,n\}\)의 원소을 채워넣어 얻어진다
- 영 태블로의 각 열을 따라 수가 강하게 증가(strictly increasing)하고 각 행을 따라 수가 약하게 증가(weakly increasing)할 때 이를 준표준 영 태블로(semistandard Young tableau)라 한다
- \(\rm{gl}_n\)의 \(\lambda\)에 대응되는 기약표현의 기저와 대응된다
- 분할 \(\lambda\) 형태의 준표준 영 태블로의 집합으로부터 슈르 다항식(Schur polynomial)을 기술할 수 있다
표준 영 태블로
- 7의 분할 \((4,2,1)\)의 영 다이어그램에 다음과 같은 수를 채워넣어 얻어진다
\begin{array}{ccc} \{1,4,6,7\} & \{2,5\} & \{3\} \\ \{1,3,6,7\} & \{2,5\} & \{4\} \\ \{1,2,6,7\} & \{3,5\} & \{4\} \\ \{1,3,6,7\} & \{2,4\} & \{5\} \\ \{1,2,6,7\} & \{3,4\} & \{5\} \\ \{1,4,5,7\} & \{2,6\} & \{3\} \\ \{1,3,5,7\} & \{2,6\} & \{4\} \\ \{1,2,5,7\} & \{3,6\} & \{4\} \\ \{1,3,4,7\} & \{2,6\} & \{5\} \\ \{1,2,4,7\} & \{3,6\} & \{5\} \\ \{1,2,3,7\} & \{4,6\} & \{5\} \\ \{1,3,5,7\} & \{2,4\} & \{6\} \\ \{1,2,5,7\} & \{3,4\} & \{6\} \\ \{1,3,4,7\} & \{2,5\} & \{6\} \\ \{1,2,4,7\} & \{3,5\} & \{6\} \\ \{1,2,3,7\} & \{4,5\} & \{6\} \\ \{1,4,5,6\} & \{2,7\} & \{3\} \\ \{1,3,5,6\} & \{2,7\} & \{4\} \\ \{1,2,5,6\} & \{3,7\} & \{4\} \\ \{1,3,4,6\} & \{2,7\} & \{5\} \\ \{1,2,4,6\} & \{3,7\} & \{5\} \\ \{1,2,3,6\} & \{4,7\} & \{5\} \\ \{1,3,4,5\} & \{2,7\} & \{6\} \\ \{1,2,4,5\} & \{3,7\} & \{6\} \\ \{1,2,3,5\} & \{4,7\} & \{6\} \\ \{1,2,3,4\} & \{5,7\} & \{6\} \\ \{1,3,5,6\} & \{2,4\} & \{7\} \\ \{1,2,5,6\} & \{3,4\} & \{7\} \\ \{1,3,4,6\} & \{2,5\} & \{7\} \\ \{1,2,4,6\} & \{3,5\} & \{7\} \\ \{1,2,3,6\} & \{4,5\} & \{7\} \\ \{1,3,4,5\} & \{2,6\} & \{7\} \\ \{1,2,4,5\} & \{3,6\} & \{7\} \\ \{1,2,3,5\} & \{4,6\} & \{7\} \\ \{1,2,3,4\} & \{5,6\} & \{7\} \end{array}
- 이렇게 얻어진 35개의 표준 영 태블로는 다음과 같다
\begin{array}{cccc} \boxed{1} & \boxed{4} & \boxed{6} & \boxed{7} \\ \boxed{2} & \boxed{5} & \text{} & \text{} \\ \boxed{3} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{6} & \boxed{7} \\ \boxed{2} & \boxed{5} & \text{} & \text{} \\ \boxed{4} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{6} & \boxed{7} \\ \boxed{3} & \boxed{5} & \text{} & \text{} \\ \boxed{4} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{6} & \boxed{7} \\ \boxed{2} & \boxed{4} & \text{} & \text{} \\ \boxed{5} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{6} & \boxed{7} \\ \boxed{3} & \boxed{4} & \text{} & \text{} \\ \boxed{5} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{4} & \boxed{5} & \boxed{7} \\ \boxed{2} & \boxed{6} & \text{} & \text{} \\ \boxed{3} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{5} & \boxed{7} \\ \boxed{2} & \boxed{6} & \text{} & \text{} \\ \boxed{4} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{5} & \boxed{7} \\ \boxed{3} & \boxed{6} & \text{} & \text{} \\ \boxed{4} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{4} & \boxed{7} \\ \boxed{2} & \boxed{6} & \text{} & \text{} \\ \boxed{5} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{4} & \boxed{7} \\ \boxed{3} & \boxed{6} & \text{} & \text{} \\ \boxed{5} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{3} & \boxed{7} \\ \boxed{4} & \boxed{6} & \text{} & \text{} \\ \boxed{5} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{5} & \boxed{7} \\ \boxed{2} & \boxed{4} & \text{} & \text{} \\ \boxed{6} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{5} & \boxed{7} \\ \boxed{3} & \boxed{4} & \text{} & \text{} \\ \boxed{6} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{4} & \boxed{7} \\ \boxed{2} & \boxed{5} & \text{} & \text{} \\ \boxed{6} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{4} & \boxed{7} \\ \boxed{3} & \boxed{5} & \text{} & \text{} \\ \boxed{6} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{3} & \boxed{7} \\ \boxed{4} & \boxed{5} & \text{} & \text{} \\ \boxed{6} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{4} & \boxed{5} & \boxed{6} \\ \boxed{2} & \boxed{7} & \text{} & \text{} \\ \boxed{3} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{5} & \boxed{6} \\ \boxed{2} & \boxed{7} & \text{} & \text{} \\ \boxed{4} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{5} & \boxed{6} \\ \boxed{3} & \boxed{7} & \text{} & \text{} \\ \boxed{4} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{4} & \boxed{6} \\ \boxed{2} & \boxed{7} & \text{} & \text{} \\ \boxed{5} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{4} & \boxed{6} \\ \boxed{3} & \boxed{7} & \text{} & \text{} \\ \boxed{5} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{3} & \boxed{6} \\ \boxed{4} & \boxed{7} & \text{} & \text{} \\ \boxed{5} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{4} & \boxed{5} \\ \boxed{2} & \boxed{7} & \text{} & \text{} \\ \boxed{6} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{4} & \boxed{5} \\ \boxed{3} & \boxed{7} & \text{} & \text{} \\ \boxed{6} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{3} & \boxed{5} \\ \boxed{4} & \boxed{7} & \text{} & \text{} \\ \boxed{6} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{3} & \boxed{4} \\ \boxed{5} & \boxed{7} & \text{} & \text{} \\ \boxed{6} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{5} & \boxed{6} \\ \boxed{2} & \boxed{4} & \text{} & \text{} \\ \boxed{7} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{5} & \boxed{6} \\ \boxed{3} & \boxed{4} & \text{} & \text{} \\ \boxed{7} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{4} & \boxed{6} \\ \boxed{2} & \boxed{5} & \text{} & \text{} \\ \boxed{7} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{4} & \boxed{6} \\ \boxed{3} & \boxed{5} & \text{} & \text{} \\ \boxed{7} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{3} & \boxed{6} \\ \boxed{4} & \boxed{5} & \text{} & \text{} \\ \boxed{7} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{3} & \boxed{4} & \boxed{5} \\ \boxed{2} & \boxed{6} & \text{} & \text{} \\ \boxed{7} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{4} & \boxed{5} \\ \boxed{3} & \boxed{6} & \text{} & \text{} \\ \boxed{7} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{3} & \boxed{5} \\ \boxed{4} & \boxed{6} & \text{} & \text{} \\ \boxed{7} & \text{} & \text{} & \text{} \end{array},\begin{array}{cccc} \boxed{1} & \boxed{2} & \boxed{3} & \boxed{4} \\ \boxed{5} & \boxed{6} & \text{} & \text{} \\ \boxed{7} & \text{} & \text{} & \text{} \end{array}
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxeGoxMzFlUTRnMUE/edit
- http://mathworld.wolfram.com/YoungTableau.html
- http://www.sagemath.org/doc/reference/sage/combinat/tableau.html
사전 형태의 참고자료
리뷰, 에세이, 강의노트
- Adin, Ron M., and Yuval Roichman. “Enumeration of Standard Young Tableaux.” arXiv:1408.4497 [math], August 19, 2014. http://arxiv.org/abs/1408.4497.
- http://www.thehcmr.org/issue2_2/tableaux.pdf
- A. Yong. What is a Young tableau? Notices of the American MathematicalSociety 54(2) (2007), 240-241. http://www.ams.org/notices/200702/whatis-yong.pdf
관련논문
- Carsten Schneider, Robin Sulzgruber, Asymptotic and exact results on the complexity of the Novelli--Pak--Stoyanovskii algorithm, arXiv:1606.07597 [math.CO], June 24 2016, http://arxiv.org/abs/1606.07597
메타데이터
위키데이터
- ID : Q2166280
Spacy 패턴 목록
- [{'LOWER': 'young'}, {'LEMMA': 'tableau'}]
- [{'LOWER': 'young'}, {'LEMMA': 'diagram'}]