"대칭군 (symmetric group)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
(차이 없음)

2012년 11월 1일 (목) 12:14 판

이 항목의 스프링노트 원문주소==    
개요==
  • 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
  • \(n!\) 개의 원소가 존재함
  • 대칭군의 부분군은 치환군(permutation group)이라 불림
   
presentation==
  • 생성원 \(\sigma_1, \ldots, \sigma_{n-1}\)
    여기서 \(\sigma_i=(i, i+1)\)
  • 관계식
    • \({\sigma_i}^2 = 1\)
    • \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\) (즉 \(|i-j|\geq 2\))
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\\) (또는 \((\sigma_i\sigma_{i+1})^3=1\) 로 쓸 수 있다)
  • 이로부터  대칭군은 유한반사군과 콕세터군(finite reflection groups and Coxeter groups) 임을 알 수 있다
    \(\left\langle \sigma_1,\cdots \sigma_{n-1}\mid \sigma_1^2=\cdots=\sigma_{n-1}^2=1, (\sigma_i\sigma_{i+1})^{3}=1, i=1,\cdots, n-2\right\rangle\)
       
방정식에의 응용 치환군==    
관련된 항목들==      
메모==    
역사==      

매스매티카 파일 및 계산 리소스

 

 

 

수학용어번역==      
사전 형태의 자료==  
관련논문==    
관련도서==    
관련기사==    
블로그==