"대칭다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 +
 +
* [[대칭군과 대칭다항식|대칭다항식]]
  
 
 
 
 
6번째 줄: 8번째 줄:
  
 
<h5>개요</h5>
 
<h5>개요</h5>
 +
 +
* n 변수의 다항식 <math>f(x_1,x_2,\cdots,x_n)</math> 이 <math>x_1,x_2,\cdots,x_n</math> 의 모든 permutation에 의해서 불변일 때, 대칭다항식이라 한다 ( [[대칭군 (symmetric group)]] )
 +
* <math>f(x_1,x_2,\cdots,x_n)</math> 이 <math>x_1,x_2,\cdots,x_n</math> 중에서 두 변수를 바꾸는
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5>예</h5>
 +
 +
* 세 변수의 경우
 +
* <math>x_1+x_2+x_3</math>
 +
* <math>x_1 x_2+x_1 x_3+x_2 x_3</math>
 +
* <math>x_1 x_2 x_3</math>
 +
 +
 
 +
 +
 
 +
 +
 
  
 
 
 
 
  
* polynomial symmetric functions
 
 
*  three well-known bases<br>
 
*  three well-known bases<br>
 
** m : monomial symmetric functions
 
** m : monomial symmetric functions

2011년 11월 19일 (토) 09:04 판

이 항목의 수학노트 원문주소

 

 

개요
  • n 변수의 다항식 \(f(x_1,x_2,\cdots,x_n)\) 이 \(x_1,x_2,\cdots,x_n\) 의 모든 permutation에 의해서 불변일 때, 대칭다항식이라 한다 ( 대칭군 (symmetric group) )
  • \(f(x_1,x_2,\cdots,x_n)\) 이 \(x_1,x_2,\cdots,x_n\) 중에서 두 변수를 바꾸는

 

 

 

  • 세 변수의 경우
  • \(x_1+x_2+x_3\)
  • \(x_1 x_2+x_1 x_3+x_2 x_3\)
  • \(x_1 x_2 x_3\)

 

 

 

 

  • three well-known bases
    • m : monomial symmetric functions
    • e :  elementary symmetric polynomials
    • h :  complete homogeneous symmetric polynomials

 

  • algebraic independence result (Ruffini, around 1800)

 

  • power sums
    • A. Girard
    • Waring

 

 

 

반데몬드 행렬과 행렬식 (Vandermonde matrix)

코쉬 행렬과 행렬식

 

 

 

Jacobi-Trudi identity

sequence \delta : n-1,n-2,\cdots, 0

\lambda : partition \lambda_1\ geq \lambda_2,\cdots, \lambda_n\geq 0

\(a_{\lambda+\delta}=\operatorname{det}(x_{i}^{\lambda_{j}+n-j})\)

\(t_{\lambda} = a_{\lambda+\delta}/a_{\delta} =\sum_{w\in S_{n} } \epsilon(w) h_{\lambda+\delta - w.\lambda}\)

 

 

The first Giambelli formula

\(t_{\lambda} = \operatorname{det}(h_{\lambda_{i}-i+j})\)

 

Schur polynomials http://en.wikipedia.org/wiki/Schur_polynomial

 

 

 

J. Dieudonné, Schur functions and group representations , Young tableaux and Schur functors in algebra and geometry, Astéerisque, 87--88 , 7--19 (1981)

 

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서