"라마누잔-셀베르그 연분수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 라마누잔-셀베르그 연분수로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5>이 항목의 수학노트 원문주소</h5> | ||
+ | * [[라마누잔-셀베르그 연분수]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>개요</h5> | ||
+ | |||
+ | * [[Ramanujan-Göllnitz-Gordon 연분수]]<br> | ||
+ | * '''[Duke2005] '''(9.1)<br><math>u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}</math><br><math>v(\tau)={q^{1/2} \over 1+q + } {q \over 1+q^2+} {q^2 \over 1+q^3} } \cdots=q^{1/2}\prod_{n=1}^{\infty}(1-q^{n})^{(\frac{8}{n})}=q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | * 셀베르그<br><math>S_1(q)=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=u(\tau)=\sqrt{2}\frac{\eta(\tau)\eta^{2}(4\tau)}{\eta^{3}(2\tau)}</math><br><math>S_2(q)=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(q;q^{2})_{\infty}}=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}(q^2;q^{2})_{\infty}}{(q;q^{2})_{\infty}(q^2;q^{2})_{\infty}} =\frac{\eta(4\tau)}{\eta(\tau)}</math><br> S1 , S2은 '''[Chan2009]''' 의 표기<br> | ||
+ | * [[q-series 의 공식 모음]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>역사</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>메모</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * Math Overflow http://mathoverflow.net/search?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 항목들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>수학용어번역</h5> | ||
+ | |||
+ | * 단어사전<br> | ||
+ | ** http://translate.google.com/#en|ko| | ||
+ | ** http://ko.wiktionary.org/wiki/ | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표] | ||
+ | * [http://cgi.postech.ac.kr/cgi-bin/cgiwrap/sand/terms/terms.cgi 한국물리학회 물리학 용어집 검색기] | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>매스매티카 파일 및 계산 리소스</h5> | ||
+ | |||
+ | * | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * http://functions.wolfram.com/ | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation] | ||
+ | * [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] | ||
+ | * [http://dlmf.nist.gov NIST Digital Library of Mathematical Functions] | ||
+ | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>리뷰논문, 에세이, 강의노트</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련논문</h5> | ||
+ | |||
+ | * [http://dx.doi.org/0.1090/S0002-9939-09-09835-9 From a Ramanujan-Selberg continued fraction to a Jacobian identity]<br> | ||
+ | ** Hei-Chi ChanJournal: Proc. Amer. Math. Soc. 137 (2009), 2849-2856.<br> | ||
+ | * [http://dx.doi.org/10.1155/IJMMS/2006/54901 Modular relations and explicit values of Ramanujan-Selberg continued fractions]<br> | ||
+ | ** Nayandeep Deka Baruah and Nipen Saikia, 2006<br> | ||
+ | * [http://www.ams.org/proc/2002-130-01/S0002-9939-01-06183-4/home.html Explicit evaluations of a Ramanujan-Selberg continued fraction]<br> | ||
+ | ** Liang-Cheng Zhang, 2002<br> | ||
+ | |||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 8월 25일 (토) 13:55 판
이 항목의 수학노트 원문주소
개요
- Ramanujan-Göllnitz-Gordon 연분수
- [Duke2005] (9.1)
\(u(\tau)={\sqrt{2}q^{1/8} \over 1+ } {q \over 1+q+} {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\sqrt{2}q^{1/8}\prod_{n=1}^{\infty}(1+q^{n})^{(-1)^{n}}=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}\)
\(v(\tau)={q^{1/2} \over 1+q + } {q \over 1+q^2+} {q^2 \over 1+q^3} } \cdots=q^{1/2}\prod_{n=1}^{\infty}(1-q^{n})^{(\frac{8}{n})}=q^{1/2}\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}\)
- 셀베르그
\(S_1(q)=\sqrt{2}q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(-q;q^{2})_{\infty}}=u(\tau)=\sqrt{2}\frac{\eta(\tau)\eta^{2}(4\tau)}{\eta^{3}(2\tau)}\)
\(S_2(q)=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}} {(q;q^{2})_{\infty}}=q^{1/8}\frac{(-q^{2};q^{2})_{\infty}(q^2;q^{2})_{\infty}}{(q;q^{2})_{\infty}(q^2;q^{2})_{\infty}} =\frac{\eta(4\tau)}{\eta(\tau)}\)
S1 , S2은 [Chan2009] 의 표기 - q-series 의 공식 모음
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 한국물리학회 물리학 용어집 검색기
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
- From a Ramanujan-Selberg continued fraction to a Jacobian identity
- Hei-Chi ChanJournal: Proc. Amer. Math. Soc. 137 (2009), 2849-2856.
- Hei-Chi ChanJournal: Proc. Amer. Math. Soc. 137 (2009), 2849-2856.
- Modular relations and explicit values of Ramanujan-Selberg continued fractions
- Nayandeep Deka Baruah and Nipen Saikia, 2006
- Nayandeep Deka Baruah and Nipen Saikia, 2006
- Explicit evaluations of a Ramanujan-Selberg continued fraction
- Liang-Cheng Zhang, 2002
- Liang-Cheng Zhang, 2002