"라마누잔의 세타함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “==관련논문== * http://www.jstor.org/action/doBasicSearch?Query= * http://www.ams.org/mathscinet * http://dx.doi.org/” 문자열을 “” 문자열로)
105번째 줄: 105번째 줄:
 
 
 
 
  
==관련논문==
 
  
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
  
 
 
 
 

2012년 11월 2일 (금) 07:41 판

이 항목의 스프링노트 원문주소

 

 

개요

 \(f(a,b) = \sum_{n=-\infty}^\infty a^{n(n+1)/2} \; b^{n(n-1)/2}\)

 자코비 삼중곱

\(f(a,b) = (-a; ab)_\infty \;(-b; ab)_\infty \;(ab;ab)_\infty\)

 

 \(\phi(q):=f(q,q)=\sum _{n=-\infty }^{\infty } q^{n^2}=(-q;q^2)^{2}_{\infty} \left(q^2;q^2\right){}_{\infty }\)

\(\psi(q):=f(q,q^{3})=\sum _{n=0}^{\infty } q^{n(n+1)/2}=\frac{\left(q^2;q^2\right){}_{\infty }}{\left(q;q^2\right){}_{\infty }}\)

\(f(-q):=f(-q,-q^{2})=(q;q)_{\infty }\)

\(\frac{f(-q^{2},-q^{2})}{f(-q)}=\frac{\left(q^2;q^4\right)^2_{\infty }\left(q^4;q^4\right){}_{\infty }}{(q;q)_{\infty }}=\left(-q;q^2\right){}_{\infty }\)

 

 

메모

\(f(-q)=(q;q)_{\infty}\)

\(\phi(-q)=\frac{(q;q)_{\infty}}{(-q;q)_{\infty}}\)

\(\psi(-q)=\frac{(q^{2};q^{2})_{\infty}}{(-q;q^{2})_{\infty}}\)

\(\chi(-q)=(q;q^{2})_{\infty}\)

 

 

메모

 

 

 

역사

 

 

 

메모

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 


 

 

관련도서