"르벡 항등식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “ * 구글 블로그 검색<br> ** http://blogsearch.google.com/blogsearch?q=” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로) |
||
9번째 줄: | 9번째 줄: | ||
==개요== | ==개요== | ||
− | * '''[Alladi&Gordon1993] 278&279p''' | + | * '''[Alladi&Gordon1993] 278&279p''':<math>f(a,c)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-cq)_{k}}{(q)_{k}}</math><br> |
− | * a=q, c=z일 때, 르벡 항등식 (Lebesgue's identity) 을 얻는다 | + | * a=q, c=z일 때, 르벡 항등식 (Lebesgue's identity) 을 얻는다:<math>f(q,z)=\sum_{k\geq 0}\frac{q^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{k\geq 0}\frac{q^{k(k+1)/2}(-zq)_{k}}{(q)_{k}}=(-zq^2;q^2)_{\infty}(-q)_{\infty}=\prod_{m=1}^{\infty} (1+zq^{2m})(1+q^{m})</math><br> |
2013년 1월 12일 (토) 09:34 판
이 항목의 수학노트 원문주소
개요
- [Alladi&Gordon1993] 278&279p\[f(a,c)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-cq)_{k}}{(q)_{k}}\]
- a=q, c=z일 때, 르벡 항등식 (Lebesgue's identity) 을 얻는다\[f(q,z)=\sum_{k\geq 0}\frac{q^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{k\geq 0}\frac{q^{k(k+1)/2}(-zq)_{k}}{(q)_{k}}=(-zq^2;q^2)_{\infty}(-q)_{\infty}=\prod_{m=1}^{\infty} (1+zq^{2m})(1+q^{m})\]
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문과 에세이
관련논문
- [Alladi&Gordon1993]Partition identities and a continued fraction of Ramanujan ,Krishnaswami Alladi and Basil Gordon, 1993
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/