"바이어슈트라스 타원함수 ℘"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">정의</h5> | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">정의</h5> | ||
− | * 2차원격자를 이루는 두 복소수 <math>\omega_1,\omega_2</math>에 대하여, <br><math>\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}</math><br> 는 타원함수가 됨.<br> | + | * 2차원격자를 이루는 두 복소수 <math>\omega_1,\omega_2</math>에 대하여, <br><math>\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}</math><br><math>\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}</math><br> |
+ | |||
+ | |||
+ | |||
+ | * 는 타원함수가 됨.<br> | ||
7번째 줄: | 11번째 줄: | ||
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;"><math>\wp</math>의 로랑급수</h5> | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;"><math>\wp</math>의 로랑급수</h5> | ||
− | <math>\wp(z | + | * 원점에서의 로랑급수는 다음과 같이 주어짐.<br><math>\wp(z)=z^{-2}+\frac{1}{20}g_2z^2+\frac{1}{28}g_3z^4+O(z^6)</math><br> 여기서 <math>g_2= 60\sum{}' \Omega_{m,n}^{-4},\qquad g_3=140\sum{}' \Omega_{m,n}^{-6}</math><br> |
− | |||
− | 여기서 <math>g_2= 60\sum{}' \Omega_{m,n}^{-4},\qquad g_3=140\sum{}' \Omega_{m,n}^{-6}</math> | ||
(증명) | (증명) | ||
+ | |||
+ | <math>\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)</math> 를 정의하자. | ||
+ | |||
+ | <math>\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2} \right\}</math> |
2009년 7월 2일 (목) 21:27 판
정의
- 2차원격자를 이루는 두 복소수 \(\omega_1,\omega_2\)에 대하여,
\(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
\(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
- 는 타원함수가 됨.
\(\wp\)의 로랑급수
- 원점에서의 로랑급수는 다음과 같이 주어짐.
\(\wp(z)=z^{-2}+\frac{1}{20}g_2z^2+\frac{1}{28}g_3z^4+O(z^6)\)
여기서 \(g_2= 60\sum{}' \Omega_{m,n}^{-4},\qquad g_3=140\sum{}' \Omega_{m,n}^{-6}\)
(증명)
\(\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)\) 를 정의하자.
\(\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2} \right\}\)