"바이어슈트라스 타원함수 ℘"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
28번째 줄: 28번째 줄:
 
<math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) </math> 를 정의하자.
 
<math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) </math> 를 정의하자.
  
<math>\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2} \right\}</math> 이므로 <math>\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)</math> 의 로랑급수를 구한 뒤, 미분을 하면 된다.
+
<math>\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2}</math> 이므로 <math>\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)</math> 의 로랑급수를 구한 뒤, 미분을 하면 된다.
  
 
<math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2}(-\frac{1}{\omega}-\frac{z}{\omega^2}-\frac{z^2}{\omega^3}-\cdots)</math>
 
<math>\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2}(-\frac{1}{\omega}-\frac{z}{\omega^2}-\frac{z^2}{\omega^3}-\cdots)</math>
39번째 줄: 39번째 줄:
  
 
* <math>G_{2n}</math>에 대해서는 [[모듈라 형식(modular forms)]]의 아이젠슈타인 급수 참조.<br>
 
* <math>G_{2n}</math>에 대해서는 [[모듈라 형식(modular forms)]]의 아이젠슈타인 급수 참조.<br>
 
 
 
 
  
 
==미분방정식==
 
==미분방정식==

2012년 10월 27일 (토) 12:34 판

개요

정의

  • 2차원격자를 이루는 두 복소수 \(\omega_1,\omega_2\)에 대하여,
    \(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
    \(\wp(z;\omega_1,\omega_2)=\frac{1}{z^2}+ \sum_{m^2+n^2 \ne 0} \left\{ \frac{1}{(z-m\omega_1-n\omega_2)^2}- \frac{1}{\left(m\omega_1+n\omega_2\right)^2} \right\}\)
  • 이중주기를 갖는 함수
    \(\wp(z+\omega_1)=\wp(z+\omega_2)=\wp(z)\)




℘의 로랑급수

  • 원점에서의 로랑급수는 다음과 같이 주어짐.
    \(\wp(z)=z^{-2}+\frac{g_2}{20}z^2+\frac{g_3}{28}z^4+\frac{g_2^2}{1200}z^6+O(z^8)\)
    여기서 \(g_2= 60\sum{}' \omega_{m,n}^{-4}\), \(g_3=140\sum{}' \omega_{m,n}^{-6}\)


(증명)

\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2) \) 를 정의하자.

\(\wp(z)=-\zeta'(z)=\sum_{\omega\in \Omega} \frac{1}{(z-m)^2}- \frac{1}{\omega^2}\) 이므로 \(\zeta(z)=\frac{1}{z}+\sum_{\Omega}(\frac{1}{z-\omega}+\frac{1}{\omega}+\frac{z}{\omega}^2)\) 의 로랑급수를 구한 뒤, 미분을 하면 된다.

\(\zeta(z)=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2(z-\omega)}=\frac{1}{z}+\sum_{\omega \in \Omega}\frac{z^2}{\omega^2}(-\frac{1}{\omega}-\frac{z}{\omega^2}-\frac{z^2}{\omega^3}-\cdots)\)

\(=\frac{1}{z}+\sum_{\omega \in \Omega}(-\frac{z^2}{\omega^3}-\frac{z^3}{\omega^4}-\frac{z^4}{\omega^5}-\cdots)=\frac{1}{z}-G_3z^2-G_4z^3-\cdots=\frac{1}{z}-\sum_{n=2}^{\infty}G_{2n}z^{2n-1}\). 여기서 \(G_{2n}=\sum_{\omega\in \Omega} \frac{1}{\omega^{2n}}\).

따라서 \(\wp(z)=\frac{1}{z^2}-\sum_{n=2}^{\infty}(2n-1)G_{2n}z^{2n-2}\).


미분방정식

  • 바이어슈트라스 타원함수는 다음 미분방정식을 만족시킴
    \(\wp'(z)^2=4\wp(z)^3-g_2\wp(z)-g_3\)



도함수의 해

  • \(\wp(z)\)는 우함수, \(\wp'(z)\)는 기함수임을 이용하면, \(\wp'(\frac{\omega}{2})=0\) 임을 증명할 수 있다
  • \(e_1:=\wp(\frac{\omega_1}{2};\omega_1,\omega_2)\)
    \(e_2:=\wp(\frac{\omega_2}{2};\omega_1,\omega_2)\)
    \(e_3:=\wp(\frac{\omega_1+\omega_2}{2};\omega_1,\omega_2)\)
  • 다음 타원곡선의 branch points로 이해할 수 있음
    \(y^2=4x^3-g_2x-g_3=4(x-e_1)(x-e_2)(x-e_3)\)



덧셈공식

\(\wp(z+w)=-\wp(z)-\wp(w)+\frac{1}{4}(\frac{\wp'(z)-\wp'(w)}{\wp(z)-\wp(w)})^2\)



역사



메모




관련된 항목들

수학용어번역



사전 형태의 자료