"블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/3321277">Dilogarithm 함수</a>페이지로 이동하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5> | ||
+ | |||
+ | * [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]]<br> | ||
18번째 줄: | 20번째 줄: | ||
<h5 style="margin: 0px; line-height: 2em;">항등식</h5> | <h5 style="margin: 0px; line-height: 2em;">항등식</h5> | ||
− | <math>\mbox{Li}_2(x)</math>,<math>\mbox{Li}_2 \left(\frac{1}{1-x}\right)</math>, <math>\mbox{Li}_2 \left(1- \frac{1}{x} \right)</math>, <math>-\mbox{Li}_2 \left( \frac{1}{x} \right)</math>,<math>-\mbox{Li}_2 \left(1-x \right)</math> , <math>-\mbox{Li}_2 \left( \frac{x}{x-1} \right)</math> | + | <math>D(z)=D(1-\frac{1}{z})=D(\frac{1}{1-z})=-D(\frac{1}{z})=-D(1-z)=-D(\frac{z}{z-1})</math> |
+ | |||
+ | * [[다이로그 함수(dilogarithm)|Dilogarithm 함수]]의 결과를 깔끔하게 만들어줌<br><math>\mbox{Li}_2(x)</math>,<math>\mbox{Li}_2 \left(\frac{1}{1-x}\right)</math>, <math>\mbox{Li}_2 \left(1- \frac{1}{x} \right)</math>, <math>-\mbox{Li}_2 \left( \frac{1}{x} \right)</math>,<math>-\mbox{Li}_2 \left(1-x \right)</math> , <math>-\mbox{Li}_2 \left( \frac{x}{x-1} \right)</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">five-term relation</h5> | ||
+ | |||
+ | <math>D(x)+D(y)+D\left( \frac{1-x}{1-xy} \right)+D(1-xy)+D\left( \frac{1-y}{1-xy} \right)=0</math> | ||
+ | |||
+ | * [[다이로그 함수(dilogarithm)|Dilogarithm 함수]]의 경우 | ||
+ | |||
+ | <math>\mbox{Li}_2(x)+\mbox{Li}_2(y)+\mbox{Li}_2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_2(1-xy)+\mbox{Li}_2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})</math> | ||
+ | |||
+ | |||
2009년 12월 20일 (일) 12:23 판
이 항목의 스프링노트 원문주소
간단한 소개
- Dilogarithm
\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \) for \(z\in \mathbb C-[1,\infty)\) - Bloch-Wigner dilogarithm
\(D(z)=\text{Im}(\operatorname{Li}_2(z))+\log|z|\arg(1-z)\) - 로바체프스키와 클라우센 함수 항목 참조
- real analytic on \(\mathbb{C}\) except at the two point 0 and 1.
항등식
\(D(z)=D(1-\frac{1}{z})=D(\frac{1}{1-z})=-D(\frac{1}{z})=-D(1-z)=-D(\frac{z}{z-1})\)
- Dilogarithm 함수의 결과를 깔끔하게 만들어줌
\(\mbox{Li}_2(x)\),\(\mbox{Li}_2 \left(\frac{1}{1-x}\right)\), \(\mbox{Li}_2 \left(1- \frac{1}{x} \right)\), \(-\mbox{Li}_2 \left( \frac{1}{x} \right)\),\(-\mbox{Li}_2 \left(1-x \right)\) , \(-\mbox{Li}_2 \left( \frac{x}{x-1} \right)\)
five-term relation
\(D(x)+D(y)+D\left( \frac{1-x}{1-xy} \right)+D(1-xy)+D\left( \frac{1-y}{1-xy} \right)=0\)
- Dilogarithm 함수의 경우
\(\mbox{Li}_2(x)+\mbox{Li}_2(y)+\mbox{Li}_2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_2(1-xy)+\mbox{Li}_2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)