"블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/3321277">Dilogarithm 함수</a>페이지로 이동하였습니다.)
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 +
 +
* [[블로흐-비그너 다이로그(Bloch-Wigner dilogarithm)|Bloch-Wigner dilogarithm]]<br>
  
 
 
 
 
18번째 줄: 20번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">항등식</h5>
 
<h5 style="margin: 0px; line-height: 2em;">항등식</h5>
  
<math>\mbox{Li}_2(x)</math>,<math>\mbox{Li}_2 \left(\frac{1}{1-x}\right)</math>,  <math>\mbox{Li}_2 \left(1- \frac{1}{x} \right)</math>, <math>-\mbox{Li}_2 \left( \frac{1}{x} \right)</math>,<math>-\mbox{Li}_2 \left(1-x \right)</math> , <math>-\mbox{Li}_2 \left( \frac{x}{x-1} \right)</math>
+
<math>D(z)=D(1-\frac{1}{z})=D(\frac{1}{1-z})=-D(\frac{1}{z})=-D(1-z)=-D(\frac{z}{z-1})</math>
 +
 
 +
* [[다이로그 함수(dilogarithm)|Dilogarithm 함수]]의 결과를 깔끔하게 만들어줌<br><math>\mbox{Li}_2(x)</math>,<math>\mbox{Li}_2 \left(\frac{1}{1-x}\right)</math>,  <math>\mbox{Li}_2 \left(1- \frac{1}{x} \right)</math>, <math>-\mbox{Li}_2 \left( \frac{1}{x} \right)</math>,<math>-\mbox{Li}_2 \left(1-x \right)</math> , <math>-\mbox{Li}_2 \left( \frac{x}{x-1} \right)</math><br>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">five-term relation</h5>
 +
 
 +
<math>D(x)+D(y)+D\left( \frac{1-x}{1-xy} \right)+D(1-xy)+D\left( \frac{1-y}{1-xy} \right)=0</math>
 +
 
 +
* [[다이로그 함수(dilogarithm)|Dilogarithm 함수]]의 경우
 +
 
 +
<math>\mbox{Li}_2(x)+\mbox{Li}_2(y)+\mbox{Li}_2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_2(1-xy)+\mbox{Li}_2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})</math>
 +
 
 +
 
  
 
 
 
 

2009년 12월 20일 (일) 12:23 판

이 항목의 스프링노트 원문주소

 

 

간단한 소개
  • Dilogarithm
    \(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \) for \(z\in \mathbb C-[1,\infty)\)
  • Bloch-Wigner dilogarithm
    \(D(z)=\text{Im}(\operatorname{Li}_2(z))+\log|z|\arg(1-z)\)
  • 로바체프스키와 클라우센 함수 항목 참조
  • real analytic on \(\mathbb{C}\) except at the two point 0 and 1. 

 

 

항등식

\(D(z)=D(1-\frac{1}{z})=D(\frac{1}{1-z})=-D(\frac{1}{z})=-D(1-z)=-D(\frac{z}{z-1})\)

  • Dilogarithm 함수의 결과를 깔끔하게 만들어줌
    \(\mbox{Li}_2(x)\),\(\mbox{Li}_2 \left(\frac{1}{1-x}\right)\),  \(\mbox{Li}_2 \left(1- \frac{1}{x} \right)\), \(-\mbox{Li}_2 \left( \frac{1}{x} \right)\),\(-\mbox{Li}_2 \left(1-x \right)\) , \(-\mbox{Li}_2 \left( \frac{x}{x-1} \right)\)

 

 

five-term relation

\(D(x)+D(y)+D\left( \frac{1-x}{1-xy} \right)+D(1-xy)+D\left( \frac{1-y}{1-xy} \right)=0\)

\(\mbox{Li}_2(x)+\mbox{Li}_2(y)+\mbox{Li}_2 \left( \frac{1-x}{1-xy} \right)+\mbox{Li}_2(1-xy)+\mbox{Li}_2 \left( \frac{1-y}{1-xy} \right)=\frac{\pi^2}{2}-\log(x)\log(1-x)-\log(y)\log(1-y)+\log (\frac{1-x}{1-xy})\log (\frac{1-y}{1-xy})\)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그