"3차원 공간의 회전과 SO(3)"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
| 19번째 줄: | 19번째 줄: | ||
*  3차원에서 단위벡터 <math>(\omega _x,\omega _y,\omega _z)</math> 를 축으로 하여 <math>\theta</math> 만큼 회전시키는 변환의 행렬표현<br><math>\left( \begin{array}{ccc}  \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\  (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\  -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)</math><br>  | *  3차원에서 단위벡터 <math>(\omega _x,\omega _y,\omega _z)</math> 를 축으로 하여 <math>\theta</math> 만큼 회전시키는 변환의 행렬표현<br><math>\left( \begin{array}{ccc}  \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\  (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\  -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)</math><br>  | ||
*  유도 [http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html http:/][http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html /www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html]<br>  | *  유도 [http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html http:/][http://www.cs.berkeley.edu/%7Eug/slide/pipeline/assignments/as5/rotation.html /www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html]<br>  | ||
| − | *  x,y,<br>  | + | *  x,y,z 축을 중심으로 한 회전변환<br>  | 
| + | **  x 축<br><math>\left( \begin{array}{ccc}  1 & 0 & 0 \\  0 & \cos (\theta ) & -\sin (\theta ) \\  0 & \sin (\theta ) & \cos (\theta ) \end{array} \right)</math><br>  | ||
| + | **  y 축<br><math>\left( \begin{array}{ccc}  \cos (\theta ) & 0 & \sin (\theta ) \\  0 & 1 & 0 \\  -\sin (\theta ) & 0 & \cos (\theta ) \end{array} \right)</math><br>  | ||
| + | **  z 축<br><math>\left( \begin{array}{ccc}  \cos (\theta ) & -\sin (\theta ) & 0 \\  \sin (\theta ) & \cos (\theta ) & 0 \\  0 & 0 & 1 \end{array} \right)</math><br>  | ||
| 49번째 줄: | 52번째 줄: | ||
*  리대수의 생성원<br><math>L_{x}=\left( \begin{array}{ccc}  0 & 0 & 0 \\  0 & 0 & -1 \\  0 & 1 & 0 \end{array} \right)</math><br><math>L_{y}=\left( \begin{array}{ccc}  0 & 0 & 1 \\  0 & 0 & 0 \\  -1 & 0 & 0 \end{array} \right)</math><br><math>L_{z}=\left( \begin{array}{ccc}  0 & -1 & 0 \\  1 & 0 & 0 \\  0 & 0 & 0 \end{array} \right)</math><br>  | *  리대수의 생성원<br><math>L_{x}=\left( \begin{array}{ccc}  0 & 0 & 0 \\  0 & 0 & -1 \\  0 & 1 & 0 \end{array} \right)</math><br><math>L_{y}=\left( \begin{array}{ccc}  0 & 0 & 1 \\  0 & 0 & 0 \\  -1 & 0 & 0 \end{array} \right)</math><br><math>L_{z}=\left( \begin{array}{ccc}  0 & -1 & 0 \\  1 & 0 & 0 \\  0 & 0 & 0 \end{array} \right)</math><br>  | ||
| − | + | * [[벡터의 외적(cross product)]]<br>  | |
| − | |||
2012년 2월 22일 (수) 15:08 판
이 항목의 수학노트 원문주소
개요
로드리게스 공식
- 3차원에서 단위벡터 \((\omega _x,\omega _y,\omega _z)\) 를 축으로 하여 \(\theta\) 만큼 회전시키는 변환의 행렬표현
\(\left( \begin{array}{ccc} \cos (\theta )-(\cos (\theta )-1) \omega _x^2 & (1-\cos (\theta )) \omega _x \omega _y-\sin (\theta ) \omega _z & \sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z \\ (1-\cos (\theta )) \omega _x \omega _y+\sin (\theta ) \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _y^2 & -\sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z \\ -\sin (\theta ) \omega _y-(\cos (\theta )-1) \omega _x \omega _z & \sin (\theta ) \omega _x-(\cos (\theta )-1) \omega _y \omega _z & \cos (\theta )-(\cos (\theta )-1) \omega _z^2 \end{array} \right)\) - 유도 http://www.cs.berkeley.edu/~ug/slide/pipeline/assignments/as5/rotation.html
 - x,y,z 축을 중심으로 한 회전변환
- x 축
\(\left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos (\theta ) & -\sin (\theta ) \\ 0 & \sin (\theta ) & \cos (\theta ) \end{array} \right)\) - y 축
\(\left( \begin{array}{ccc} \cos (\theta ) & 0 & \sin (\theta ) \\ 0 & 1 & 0 \\ -\sin (\theta ) & 0 & \cos (\theta ) \end{array} \right)\) - z 축
\(\left( \begin{array}{ccc} \cos (\theta ) & -\sin (\theta ) & 0 \\ \sin (\theta ) & \cos (\theta ) & 0 \\ 0 & 0 & 1 \end{array} \right)\) 
 - x 축
 
구면과 SO(3)
- \(S^2=SO(3)/SO(2)\) homogeneous space
 - \(L^2(S^2)\)에 작용하는 SO(3)의 표현을 통하여 구면조화함수(spherical harmonics) 이론을 전개할 수 있다
 - http://books.google.com/books?id=bNytaQ8eon4C&pg=PA76&dq=sphere+so%283%29+homogeneous+space&hl=ko&ei=e7XZTr78K-KXiAKrwoGUCg&sa=X&oi=book_result&ct=result&resnum=3&ved=0CDgQ6AEwAg#v=onepage&q=sphere%20so%283%29%20homogeneous%20space&f=false
 
사영표현(projective representation)
- 단위구면의 회전으로부터 stereographic projection 을 통해 다음과 같은 뫼비우스 변환 을 얻을 수 있다
\(f(z)=\frac{\alpha z+\beta}{-\overline{\beta}z+\overline{\alpha}}\)
여기서 \(\alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\) - 더 구체적으로 단위벡터 \((a,b,c)\) 를 축으로 하여 \(\theta\) 만큼 회전시키는 변환은 다음 뫼비우스 변환에 대응된다
\(f(z)=\frac{z \left(\cos \left(\frac{\theta }{2}\right)+i c \sin \left(\frac{\theta }{2}\right)\right)+i a \sin \left(\frac{\theta }{2}\right)-b \sin \left(\frac{\theta }{2}\right)}{z \left(b \sin \left(\frac{\theta }{2}\right)+i a \sin \left(\frac{\theta }{2}\right)\right)-i c \sin \left(\frac{\theta }{2}\right)+\cos \left(\frac{\theta }{2}\right)}\) - 벡터공간이 아닌 1차원 복소사영평면에 정의되므로, 사영표현(projective representation) 이다
 - 벡터공간에 정의되는 표현을 얻으려면, Spin(3)와 파울리 행렬 의 도입이 필요하다
 
무한소 회전
- 리대수의 생성원
\(L_{x}=\left( \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{array} \right)\)
\(L_{y}=\left( \begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right)\)
\(L_{z}=\left( \begin{array}{ccc} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)\) - 벡터의 외적(cross product)
 
역사
메모
- SO(3) 의 표현론
 - SO(3,1) 로렌츠 군의 표현론
 - 파울리 행렬, 디랙 행렬
 - Math Overflow http://mathoverflow.net/search?q=
 
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxMGIxYzExNmUtODM5Yy00NTMyLTgwYzctNWI2NjJlNzZhMWM5&sort=name&layout=list&num=50
 - http://www.wolframalpha.com/input/?i=
 - http://functions.wolfram.com/
 - NIST Digital Library of Mathematical Functions
 - Abramowitz and Stegun Handbook of mathematical functions
 - The On-Line Encyclopedia of Integer Sequences
 - Numbers, constants and computation
 - 매스매티카 파일 목록
 
수학용어번역
- 단어사전
 - 발음사전 http://www.forvo.com/search/
 - 대한수학회 수학 학술 용어집
 - 한국통계학회 통계학 용어 온라인 대조표
 - 남·북한수학용어비교
 - 대한수학회 수학용어한글화 게시판
 
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
 - http://ko.wikipedia.org/wiki/오일러_각도
 - The Online Encyclopaedia of Mathematics
 - NIST Digital Library of Mathematical Functions
 - The World of Mathematical Equations
 
리뷰논문, 에세이, 강의노트
관련논문
관련도서
- Harmonic analysis on commutative spaces
 - Groups and Symmetries http://www.springer.com/mathematics/algebra/book/978-0-387-78865-4
 - 도서내검색