"소수의 무한성"의 두 판 사이의 차이
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">이 항목의 스프링노트 원문주소</h5> | ||
+ | * [[소수의 무한성]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">개요</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>유클리드의 증명</h5> | ||
+ | |||
+ | (정리) 소수는 무한히 많다 | ||
+ | |||
+ | (증명) | ||
+ | |||
+ | 소수의 개수가 유한하다고 가정하고, <math>p_1, p_2, \cdots ,p_r</math> 가 모든 소수의 목록이라 하자. | ||
+ | |||
+ | 자연수 <math>N=p_1p_2\cdots p_r+1</math> 을 정의하자. | ||
+ | |||
+ | <math>N</math>은 각 소수 <math>p_i</math>로 나누어 나머지가 1이므로, 1과 자신 이외의 약수를 가지지 않는다. 따라서 <math>N</math>은 소수이다. | ||
+ | |||
+ | 한편 N은 <math>p_1, p_2, \cdots ,p_r</math>와 같지 않으므로, 기존의 목록에 있지 않은 새로운 소수가 된다. 모순. ■ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;">오일러의 해석학적 증명</h5> | ||
+ | |||
+ | * [[소수와 리만제타함수]]<br> | ||
+ | |||
+ | <math>\sum_{n\geq 1}\frac{1}{n^s}= \left(1 + \frac{1}{2^s} + \frac{1}{4^s} + \cdots \right) \left(1 + \frac{1}{3^s} + \frac{1}{9^s} + \cdots \right) \cdots \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \cdots</math> | ||
+ | |||
+ | <math>\zeta(s) =\prod_{p \text{:prime}} \frac{1}{1-p^{-s}}</math> | ||
+ | |||
+ | <math>\log \zeta(s) = \log \prod_{p \text{:prime}} \frac{1}{1-p^{-s}} =\sum_{p \text{:prime}} -\log (1-p^{-s})</math> | ||
+ | |||
+ | <math>\log(1+x) \approx x</math> | ||
+ | |||
+ | <math>\log \zeta(s) = \sum_{p \text{:prime}} -\log (1-p^{-s})\approx \sum_{p \text{:prime}} \ p^{-s}=\sum_{p \text{:prime}} \frac{1}{p^s}</math> | ||
+ | |||
+ | <math>\sum_{p \text{:prime}} \frac{1}{p}=\infty</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>재미있는 사실</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * Math Overflow http://mathoverflow.net/search?q= | ||
+ | * 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>역사</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>메모</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 항목들</h5> | ||
+ | |||
+ | * [[등차수열의 소수분포에 관한 디리클레 정리]] | ||
+ | * [[루트2는 무리수이다]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="BACKGROUND-POSITION: 0px 100%; FONT-SIZE: 1.16em; MARGIN: 0px; COLOR: rgb(34,61,103); LINE-HEIGHT: 3.42em; FONT-FAMILY: 'malgun gothic',dotum,gulim,sans-serif;">수학용어번역</h5> | ||
+ | |||
+ | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * http://www.wolframalpha.com/input/?i= | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> | ||
+ | ** http://www.research.att.com/~njas/sequences/?q= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련논문</h5> | ||
+ | |||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= | ||
+ | * 도서검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | ** http://book.daum.net/search/mainSearch.do?query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련기사</h5> | ||
+ | |||
+ | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | ** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>블로그</h5> | ||
+ | |||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= | ||
+ | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
+ | * [http://math.dongascience.com/ 수학동아] | ||
+ | * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] | ||
+ | * [http://betterexplained.com/ BetterExplained] |
2010년 4월 7일 (수) 14:47 판
이 항목의 스프링노트 원문주소
개요
유클리드의 증명
(정리) 소수는 무한히 많다
(증명)
소수의 개수가 유한하다고 가정하고, \(p_1, p_2, \cdots ,p_r\) 가 모든 소수의 목록이라 하자.
자연수 \(N=p_1p_2\cdots p_r+1\) 을 정의하자.
\(N\)은 각 소수 \(p_i\)로 나누어 나머지가 1이므로, 1과 자신 이외의 약수를 가지지 않는다. 따라서 \(N\)은 소수이다.
한편 N은 \(p_1, p_2, \cdots ,p_r\)와 같지 않으므로, 기존의 목록에 있지 않은 새로운 소수가 된다. 모순. ■
오일러의 해석학적 증명
\(\sum_{n\geq 1}\frac{1}{n^s}= \left(1 + \frac{1}{2^s} + \frac{1}{4^s} + \cdots \right) \left(1 + \frac{1}{3^s} + \frac{1}{9^s} + \cdots \right) \cdots \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots \right) \cdots\)
\(\zeta(s) =\prod_{p \text{:prime}} \frac{1}{1-p^{-s}}\)
\(\log \zeta(s) = \log \prod_{p \text{:prime}} \frac{1}{1-p^{-s}} =\sum_{p \text{:prime}} -\log (1-p^{-s})\)
\(\log(1+x) \approx x\)
\(\log \zeta(s) = \sum_{p \text{:prime}} -\log (1-p^{-s})\approx \sum_{p \text{:prime}} \ p^{-s}=\sum_{p \text{:prime}} \frac{1}{p^s}\)
\(\sum_{p \text{:prime}} \frac{1}{p}=\infty\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)