"수식 표현 안내"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
왼쪽의 수식을 입력하고 싶으면, 오른쪽의 주소를 적당히 변형, 복사하여, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택. (powered by MIMETEX) | 왼쪽의 수식을 입력하고 싶으면, 오른쪽의 주소를 적당히 변형, 복사하여, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택. (powered by MIMETEX) | ||
− | [http://bomber0.byus.net/mimetex/mimetex.cgi?AAAAAAAA%5C%5CBBB | + | [http://bomber0.byus.net/mimetex/mimetex.cgi?AAAAAAAA%5C%5CBBB ] |
− | |||
− | |||
− | |||
− | |||
수식의 구조는 http://bomber0.byus.net/mimetex/mimetex.cgi? + LaTeX 명령어 | 수식의 구조는 http://bomber0.byus.net/mimetex/mimetex.cgi? + LaTeX 명령어 |
2008년 10월 26일 (일) 22:09 판
왼쪽의 수식을 입력하고 싶으면, 오른쪽의 주소를 적당히 변형, 복사하여, '삽입'->'이미지 첨부'->'외부 URL로 첨부하기' 를 선택. (powered by MIMETEX)
수식의 구조는 http://bomber0.byus.net/mimetex/mimetex.cgi? + LaTeX 명령어
LaTeX 명령어 테스트는 http://www.forkosh.dreamhost.com/source_mimetex.html#preview 에서 할 수 있음.
\(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\) |
http://bomber0.byus.net/mimetex/mimetex.cgi?x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} |
\(e^{i \pi} +1 = 0\) | http://bomber0.byus.net/mimetex/mimetex.cgi?e^{i\pi}+1=0 |
\(2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5}\) | http://bomber0.byus.net/mimetex/mimetex.cgi?2\pi-3\times\frac{3\pi}{5}=\frac{\pi}{5} |
\(\frac{\sqrt{3}}{5}\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\frac{\sqrt{3}}{5} |
\(720\div12=60\) | http://bomber0.byus.net/mimetex/mimetex.cgi?720\div12=60 |
\(\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\large f^\prime(x)\ = \lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} |
\(\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right)\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\Large A\ =\ \large\left( \begin{array}{c.cccc}&1&2&\cdots&n\\ \hdash1&a_{11}&a_{12}&\cdots&a_{1n}\\ 2&a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ n&a_{n1}&a_{n2}&\cdots&a_{nn}\end{array}\right) |
\(\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right.\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\LARGE\tilde y=\left\{ {\ddot x\text{ if $\vec x$ odd}\atop\hat{\,\bar x+1}\text{ if even}}\right. |
\(\Large\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\}\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\Large\left.\begin{eqnarray} x+y+z&=&3\\2y&=&x+z\\2x+y&=&z\end{eqnarray}\right\} |
\(\Large f(x)=\int_{-\infty}^x e^{-t^2}dt\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\Large f(x)=\int_{-\infty}^x e^{-t^2}dt |
\(\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array}\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\Large\begin{array}{rccclBCB} &f&\longr[75]^{\alpha:{\normalsize f\rightar~g}}&g\\ \large\gamma&\longd[50]&&\longd[50]&\large\gamma\\ &u&\longr[75]_\beta&v\end{array} |
\(e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n\) | http://bomber0.byus.net/mimetex/mimetex.cgi?e^x=\lim_{n\to\infty} \left(1+\frac~xn\right)^n |
\(\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}}\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\Large\overbrace{a,...,a}^{\text{k a^,s}}, \underbrace{b,...,b}_{\text{l b^,s}}\hspace{10} \large\underbrace{\overbrace{a...a}^{\text{k a^,s}}, \overbrace{b...b}^{\text{l b^,s}}}_{\text{k+l elements}} |
\(\int e^{-\frac{x^2}{2}} dx\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\int%20e^{-\frac{x^2}{2}}%20dx |
\(\epsilon\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\epsilon |
\(\delta\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\delta |
\(\Delta=b^2-4ac\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\Delta=b^2-4ac |
\(\normalsize \left(\large\begin{array}{GC+23} \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\ \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=} \ \left[\begin{array}{CC} \begin{array}\frac1{E_{\fs{+1}x}} &-\frac{\nu_{xy}}{E_{\fs{+1}x}} &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}& -\frac{\nu_{zy}}{E_{\fs{+1}z}} &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\ {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\ &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array} \end{array}\right] \ \left(\large\begin{array} \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz} \end{array}\right)\) | http://bomber0.byus.net/mimetex/mimetex.cgi?\normalsize \left(\large\begin{array}{GC+23} \varepsilon_x\\\varepsilon_y\\\varepsilon_z\\\gamma_{xy}\\ \gamma_{xz}\\\gamma_{yz}\end{array}\right)\ {\Large=} \ \left[\begin{array}{CC} \begin{array}\frac1{E_{\fs{+1}x}} &-\frac{\nu_{xy}}{E_{\fs{+1}x}} &-\frac{\nu_{\fs{+1}xz}}{E_{\fs{+1}x}}\\ -\frac{\nu_{yx}}{E_y}&\frac1{E_{y}}&-\frac{\nu_{yz}}{E_y}\\ -\frac{\nu_{\fs{+1}zx}}{E_{\fs{+1}z}}& -\frac{\nu_{zy}}{E_{\fs{+1}z}} &\frac1{E_{\fs{+1}z}}\end{array} & {\LARGE 0} \\ {\LARGE 0} & \begin{array}\frac1{G_{xy}}&&\\ &\frac1{G_{\fs{+1}xz}}&\\&&\frac1{G_{yz}}\end{array} \end{array}\right] \ \left(\large\begin{array} \sigma_x\\\sigma_y\\\sigma_z\\\tau_{xy}\\\tau_{xz}\\\tau_{yz} \end{array}\right) |
http://www.sitmo.com/latex/ 에서 수식 이미지를 복사해서 붙여 넣어도 됨. 위 방법과 동일하게 LaTeX 기반입니다.
수식 이미지 복사는 인터넷 익스플로러에서는 일단 가능한데, 파이어폭스 등의 기타 브라우저에서는 잘 안 되네요. 참고하세요.
수식 이미지 예)
- 1+2=3
- \sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}
- \int_{a}^{b}f(x)dx=F(b)-F(a)
- \exists c \in (a,b) \quad \mathbf{s.t.} \quad f'(c)=\frac{f(b)-f(a)}{b-a}
- E=-N\frac{d\Phi}{dt}
- (뜬금없이 물리)
- \mathbf{X}=\left(\begin{array}{ccc}x_{11} & x_{12} & \ldots } & x_{22} & \ldots & \vdots & \ddots\end{array} \right)