"숫자 12와 24"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
38번째 줄: 38번째 줄:
 
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br><math>\zeta(2)=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{(2\pi)^2}{24}</math><br>
 
* [[ζ(2)의 계산, 오일러와 바젤문제(완전제곱수의 역수들의 합)|오일러와 바젤문제(완전제곱수의 역수들의 합)]]<br><math>\zeta(2)=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{(2\pi)^2}{24}</math><br>
 
* [[분할수의 생성함수(오일러 함수)]]<br><math>z=q</math>,<math>q=e^{-\epsilon}</math> 으로 두면 <math>\epsilon\sim 0</math> 일 때, <math>1-q\sim \epsilon</math><br><math>\prod_{n=1}^\infty \frac {1}{1-q^n} \sim \exp(\frac{\pi^2}{6\epsilon})=\exp(\frac{(2\pi)^2}{24\epsilon})</math><br><math>\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12\epsilon}+\frac{\epsilon}{24})</math><br>
 
* [[분할수의 생성함수(오일러 함수)]]<br><math>z=q</math>,<math>q=e^{-\epsilon}</math> 으로 두면 <math>\epsilon\sim 0</math> 일 때, <math>1-q\sim \epsilon</math><br><math>\prod_{n=1}^\infty \frac {1}{1-q^n} \sim \exp(\frac{\pi^2}{6\epsilon})=\exp(\frac{(2\pi)^2}{24\epsilon})</math><br><math>\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12\epsilon}+\frac{\epsilon}{24})</math><br>
 
+
* 26=24+2는 보존 끈이론의 차원<br>
* 26=24+2 는 보존 끈이론의 차원 http://www.physicsforums.com/showthread.php?p=2910595#post2910595
+
**  24는 transverse dimensions
*  
+
** http://www.physicsforums.com/showthread.php?p=2910595#post2910595
  
 
 
 
 
67번째 줄: 67번째 줄:
 
* [[라마누잔(1887- 1920)|라마누잔의 수학]]
 
* [[라마누잔(1887- 1920)|라마누잔의 수학]]
 
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|j-invariant]]
 
* [[타원 모듈라 j-함수 (elliptic modular function, j-invariant)|j-invariant]]
 
+
*  
 
 
  
 
 
 
 

2011년 6월 28일 (화) 15:18 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

숫자 12
  • 스털링 공식
    \( n!=\sqrt{2\pi n}\left({n\over e}\right)^n \left( 1 +{1\over12n} +{1\over288n^2} -{139\over51840n^3} -{571\over2488320n^4} + \cdots \right)\)

 

 

숫자 24

 

 

메모

 

 

 

관련된 항목들

 

위키링크

 

 

관련논문

 

 

관련기사