"스털링 수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 +
 +
 
  
 
 
 
 
29번째 줄: 31번째 줄:
 
<math>(x)_3=x(x-1)(x-2)=x^3-3x^2+2x</math>
 
<math>(x)_3=x(x-1)(x-2)=x^3-3x^2+2x</math>
  
 
+
s(3,0)=0, s(3,1)=2,s(3,2)=-3,s(3,3)=1
 
 
 
  
 
 
 
 

2011년 2월 1일 (화) 09:47 판

이 항목의 스프링노트 원문주소

 

 

 

개요

\(s(n,k)\) 제1종 스털링 수

 

\((x)_{k}=\sum_{j}s(k,j)x^{j}\)

 

\(S(n,k)\) 제2종 스털링 수

\(x^{k}=\sum_{j}S(k,j)(x)_j\)

 

 

제1종 스털링 수
  • 정의
    \((x)_{k}=\sum_{j}s(k,j)x^{j}\)

\((x)_3=x(x-1)(x-2)=x^3-3x^2+2x\)

s(3,0)=0, s(3,1)=2,s(3,2)=-3,s(3,3)=1

 

 

제2종 스털링 수
  • k개 원소를 갖는 집합을 n개의 블록으로 분할하는 방법의 수

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서

 

 

관련기사

 

 

링크