"슬레이터 2"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소==
  
 
* [[슬레이터 2]]
 
* [[슬레이터 2]]
7번째 줄: 7번째 줄:
 
 
 
 
  
==개요</h5>
+
==개요==
  
 
*  항등식<br><math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math><br>
 
*  항등식<br><math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math><br>
16번째 줄: 16번째 줄:
 
 
 
 
  
==항등식의 분류</h5>
+
==항등식의 분류==
  
 
* [[슬레이터 목록 (Slater's list)]]
 
* [[슬레이터 목록 (Slater's list)]]
25번째 줄: 25번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">켤레 베일리 쌍의 유도</h5>
+
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">켤레 베일리 쌍의 유도==
  
 
* [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br>
 
* [[q-가우스 합]] 에서 얻어진 다음 결과를 이용<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br><math>\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}</math><br>
35번째 줄: 35번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍의 유도</h5>
+
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베일리 쌍의 유도==
  
 
*  Use the following '''[Slater51] '''(4.1)<br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br>
 
*  Use the following '''[Slater51] '''(4.1)<br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br>
45번째 줄: 45번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin: 0px;">베일리 쌍</h5>
+
<h5 style="line-height: 2em; margin: 0px;">베일리 쌍==
  
 
<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math>
 
<math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math>
59번째 줄: 59번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series 항등식</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series 항등식==
  
 
<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
 
<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math>
72번째 줄: 72번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베테 타입 방정식 (cyclotomic equation)</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">베테 타입 방정식 (cyclotomic equation)==
  
 
Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{
 
Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{
91번째 줄: 91번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">다이로그 항등식</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">다이로그 항등식==
  
 
<math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>
 
<math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math>

2012년 11월 1일 (목) 13:53 판

이 항목의 수학노트 원문주소==    

개요

  • 항등식
    \(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
  • 베버(Weber) 모듈라 함수 의 하나
    \(\mathfrak{f}_2(\tau)=\sqrt{2}\frac{\eta(2\tau)}{\eta(\tau)}=\sqrt{2}q^{1/24} \prod_{n=1}^{\infty} (1+q^{n})=\sqrt{2}q^{1/24}\sum_{n\geq 0}\frac{q^{n(n+1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)}\)

 

 

항등식의 분류

 

 

켤레 베일리 쌍의 유도==
  • q-가우스 합 에서 얻어진 다음 결과를 이용
    \(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\),  \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
    \(\gamma_{n}=\sum_{r=0}^{\infty}\frac{\delta_{n+r}}{(x)_{r+2n}(q)_{r}}\)
  • 위의 결과에 다음을 이용
    \(x=q^2, y=-q, z\to\infty\).
  • 켤레 베일리 쌍
    \(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
    \(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
   
베일리 쌍의 유도==
  • Use the following [Slater51] (4.1)
    \(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
  • Specialize
    \(a=q,c=-q,d=\infty\)
  • Bailey pair
    \(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
    \(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\)
   
베일리 쌍== \(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\) \(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\) \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\) \(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)    
q-series 항등식== \(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=0}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)    
베테 타입 방정식 (cyclotomic equation)== Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\). Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\)  has a unique root \(0<\mu<1\). We get \(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\) a=1,d=1,e=1 The equation  becomes \(1-x=x\). \(4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2\)    
다이로그 항등식== \(L(\frac{1}{2})=\frac{1}{12}\pi^2\)