"슬레이터 목록 (Slater's list)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
15번째 줄: | 15번째 줄: | ||
<h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">Group H</h5> | <h5 style="background-position: 0px 100%; font-size: 1.16em; margin: 0px; color: rgb(34, 61, 103); line-height: 3.42em; font-family: 'malgun gothic',dotum,gulim,sans-serif;">Group H</h5> | ||
− | '''[Slater52-1] '''(4.1) | + | * '''[Slater52-1] '''(4.1)<br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br> |
− | |||
− | <math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math> | ||
* [[슬레이터 1]] | * [[슬레이터 1]] | ||
91번째 줄: | 89번째 줄: | ||
<h5>관련논문</h5> | <h5>관련논문</h5> | ||
+ | |||
+ | * '''[Slater52]'''Slater, L. J.[http://dx.doi.org/10.1112%2Fplms%2Fs2-54.2.147 Further identities of the Rogers-Ramanujan type] Proc. London Math. Soc.<br>1952s2-54: 147–167<br> | ||
+ | * '''[Slater51]'''Slater, L. J. [http://dx.doi.org/10.1112/plms/s2-53.6.460 A New Proof of Rogers's Transformations of Infinite Series]Proc. London Math. Soc. 1951 s2-53: 460-475<br> | ||
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= |
2011년 11월 12일 (토) 11:41 판
이 항목의 수학노트 원문주소
개요
Group H
- [Slater52-1] (4.1)
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
- [Slater52]Slater, L. J.Further identities of the Rogers-Ramanujan type Proc. London Math. Soc.
1952s2-54: 147–167 - [Slater51]Slater, L. J. A New Proof of Rogers's Transformations of Infinite SeriesProc. London Math. Soc. 1951 s2-53: 460-475