"역제곱 벡터장"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | + | ==이 항목의 수학노트 원문주소== | |
* [[역제곱 벡터장]] | * [[역제곱 벡터장]] | ||
65번째 줄: | 65번째 줄: | ||
− | + | ==수학용어번역== | |
* 단어사전<br> | * 단어사전<br> |
2012년 11월 1일 (목) 13:24 판
이 항목의 수학노트 원문주소
개요
- n 차원에서 정의된 벡터장
\(\mathbf{F}(\mathbf{r})=\frac{\mathbf{r}}{|\mathbf{r}|^3}\) - 중력장과 전자기장에서 중요한 역할
- \(\phi(\mathbf{r})=-\frac{1}{|\mathbf{r}|}\) 를 포텐셜로 가짐
- \(\nabla\times\mathbf{F}=0\)
- \(\nabla\cdot\mathbf{F}=0\)
적분의 응용
- 3차원에서의 벡터장을 생각하자
- 바깥쪽으로 향이 주어진 단위구면 S에 대하여, 다음을 얻는다
\(\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi\) - (정리)
\(\nabla\times\mathbf{G}=\mathbf{F}\) 를 만족시키는 벡터장 \(\mathbf{G}\)가 존재하지 않는다
(증명)
\(\nabla\times\mathbf{G}=\mathbf{F}\) 를 만족시키는 벡터장 \(\mathbf{G}\) 를 가정하자.
스토크스 정리 를 적용하면, \(\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=\iint_S\ (\nabla\times\mathbf{G})\cdot\,d\mathbf{S}=\int_{\partial S}\mathbf G\cdot d\mathbf{r}=0\) 을 얻는다. 그러나
\(\iint_{S}\mathbf F\cdot\,{d}\mathbf{S}=4\pi\) 이므로 모순. ■ - \(\nabla\cdot\mathbf{F}=0\) 이라고 해서 \(\nabla\times\mathbf{G}=\mathbf{F}\) 를 만족시키는 벡터장 \(\mathbf{G}\)가 반드시 존재하는 것은 아니다
- obstruction : second homotopy group, second cohomology group
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxS1hjenlnX0xNeFU/edit
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://ko.wikipedia.org/wiki/중력장
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문