"오일러-맥클로린 공식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
8번째 줄: | 8번째 줄: | ||
<math>\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx</math> | <math>\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx</math> | ||
+ | |||
+ | <math>B_0=1</math>, <math>B_1=-{1 \over 2}</math>, <math>B_2={1\over 6}</math>, <math>B_3=0</math>, <math>B_4=-\frac{1}{30}</math>, <math>B_5=0</math>, <math>B_6=\frac{1}{42}</math> | ||
45번째 줄: | 47번째 줄: | ||
* [[스털링 공식]] | * [[스털링 공식]] | ||
+ | * [[거듭제곱의 합을 구하는 공식]] | ||
64번째 줄: | 67번째 줄: | ||
** E. Hairer (Author), G. Wanner | ** E. Hairer (Author), G. Wanner | ||
** From [http://www.amazon.com/Analysis-History-Undergraduate-Mathematics-Readings/dp/0387945512 Analysis by Its History], 160-169p | ** From [http://www.amazon.com/Analysis-History-Undergraduate-Mathematics-Readings/dp/0387945512 Analysis by Its History], 160-169p | ||
− | * Dances between continuous and discrete: Euler's summation formula | + | * [http://www.math.nmsu.edu/%7Edavidp/euler2k2.pdf Dances between continuous and discrete: Euler's summation formula]<br> |
− | * | + | ** David J. Pengelley |
− | * in: Robert Bradley and Ed Sandifer (Eds), Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002) , Euler Society, 2003. | + | ** in: Robert Bradley and Ed Sandifer (Eds), Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002) , Euler Society, 2003. |
* [http://dx.doi.org/10.2307%2F2589145 An Elementary View of Euler's Summation Formula]<br> | * [http://dx.doi.org/10.2307%2F2589145 An Elementary View of Euler's Summation Formula]<br> | ||
** Tom M. Apostol | ** Tom M. Apostol |
2009년 4월 29일 (수) 04:12 판
간단한 소개
- 수열의 합과 적분을 연결해주는 공식
\(\sum_{i=0}^n f(i) = \int^n_0f(x)\,dx-B_1(f(n)+f(0))+\sum_{k=2}^p\frac{B_k}{k!}\left(f^{(k-1)}(n)-f^{(k-1)}(0)\right)+R\)
\(\left|R\right|\leq\frac{2}{(2\pi)^{2(p+1)}}\int_0^n\left|f^{(p)}(x)\right|\,dx\)
\(B_0=1\), \(B_1=-{1 \over 2}\), \(B_2={1\over 6}\), \(B_3=0\), \(B_4=-\frac{1}{30}\), \(B_5=0\), \(B_6=\frac{1}{42}\)
응용
재미있는 사실
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- Euler-Maclaurin summation formula (pdf)
- E. Hairer (Author), G. Wanner
- From Analysis by Its History, 160-169p
- Dances between continuous and discrete: Euler's summation formula
- David J. Pengelley
- in: Robert Bradley and Ed Sandifer (Eds), Proceedings, Euler 2K+2 Conference (Rumford, Maine, 2002) , Euler Society, 2003.
- An Elementary View of Euler's Summation Formula
- Tom M. Apostol
- The American Mathematical Monthly, Vol. 106, No. 5 (May, 1999), pp. 409-418
- The Euler-Maclaurin and Taylor Formulas: Twin, Elementary Derivations
- Vito Lampret
- Mathematics Magazine, Vol. 74, No. 2 (Apr., 2001), pp. 109-122
- An Euler Summation Formula
- Irwin Roman
- The American Mathematical Monthly, Vol. 43, No. 1 (Jan., 1936), pp. 9-21
- http://ko.wikipedia.org/wiki/오일러
- http://en.wikipedia.org/wiki/Euler's_summation_formula
- http://viswiki.com/en/
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com