"오일러의 convenient number ( Idoneal number)"의 두 판 사이의 차이
37번째 줄: | 37번째 줄: | ||
* <math>m=13</math><br><math>13 + 1^2 = 14 = 2p</math><br><math>13 + 2^2 = 17 = p</math><br><math>13 + 3^2 = 22 = 2p</math><br><math>13 + 4^2 = 29 = p</math><br><math>13 + 5^2 = 38 = 2p</math><br><math>13 + 6^2 = 49 = p^2</math><br> 따라서 <math>m=13</math> 은 convenient<br> | * <math>m=13</math><br><math>13 + 1^2 = 14 = 2p</math><br><math>13 + 2^2 = 17 = p</math><br><math>13 + 3^2 = 22 = 2p</math><br><math>13 + 4^2 = 29 = p</math><br><math>13 + 5^2 = 38 = 2p</math><br><math>13 + 6^2 = 49 = p^2</math><br> 따라서 <math>m=13</math> 은 convenient<br> | ||
* <math>m=14</math><br><math>14 + 1^2 = 15 = 3 \cdot 5</math><br> 따라서 <math>m=14</math> 는 convenient 가 아님<br> | * <math>m=14</math><br><math>14 + 1^2 = 15 = 3 \cdot 5</math><br> 따라서 <math>m=14</math> 는 convenient 가 아님<br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>오일러가 발견한 성질들</h5> | ||
+ | |||
+ | 1. If m is convenient and <math>m = t^2</math>, then <math>t=1,2,3,4,5</math>.<br> 2. If m is convenient and <math>m \equiv 3 \pmod 4</math>, then 4m is convenient.<br> 3. If m is convenient and <math>m \equiv 4 \pmod 8</math>, then 4m is convenient.<br> 4. If <math>k^2 m</math> is convenient, then m is convenient.<br> 5. If m is convenient and <math>m \equiv 2 \pmod 3</math> , then 9m is convenient.<br> 6. If m > 1 is convenient and <math>m \equiv 1 \pmod 4</math> , then 4m is not convenient.<br> 7. If m is convenient and <math>m \equiv 2 \pmod 4</math>, then 4m is convenient.<br> 8. If m is convenient and <math>m \equiv 8 \pmod {16}</math>, then 4m is not convenient. | ||
+ | |||
+ | 9. If m is convenient and m =- 16 modulo 32, then 4m is not convenient.<br> 10. If m is convenient and m + a 2 = p2 < 4m for a prime p, then 4m is not convenient. | ||
62번째 줄: | 72번째 줄: | ||
* <math>m=48</math><br><math>48 + 1^2 = 49 = 7\cdot 7 : r = s</math><br><math>48 + 2^2 = 52 = 4\cdot 13 : r = 2x</math><br><math>48 + 3^2 = 57</math><br><math>48 + 4^2 = 64 = 8\cdot 8 : r = s</math><br> 따라서 <math>m=48</math> 은 convenient<br> | * <math>m=48</math><br><math>48 + 1^2 = 49 = 7\cdot 7 : r = s</math><br><math>48 + 2^2 = 52 = 4\cdot 13 : r = 2x</math><br><math>48 + 3^2 = 57</math><br><math>48 + 4^2 = 64 = 8\cdot 8 : r = s</math><br> 따라서 <math>m=48</math> 은 convenient<br> | ||
* <math>m=60</math><br><math>60 + 1^2 = 61</math><br><math>60 + 2^2 = 64 = 8\cdot 8 : r = s</math><br><math>60 + 3^2 = 69</math><br><math>60 + 4^2 = 76</math><br> 따라서 <math>m=60</math> 은 convenient<br> | * <math>m=60</math><br><math>60 + 1^2 = 61</math><br><math>60 + 2^2 = 64 = 8\cdot 8 : r = s</math><br><math>60 + 3^2 = 69</math><br><math>60 + 4^2 = 76</math><br> 따라서 <math>m=60</math> 은 convenient<br> | ||
− | * <math>m=11</math><br><math>11+1^2=12=3\cdot 4</math><br> | + | * <math>m=11</math><br><math>11+1^2=12=3\cdot 4</math><br> 따라서 <math>m=11</math> 은 convenient가 아님<br> <br> |
78번째 줄: | 88번째 줄: | ||
<h5>Grube의 판정법 2 사용예</h5> | <h5>Grube의 판정법 2 사용예</h5> | ||
− | * <math>m=30</math><br><math>30 + 1^2 = 31 = p</math><br><br> 30 + 3^2 = 39 = 3 | + | * <math>m=30</math><br><math>30 + 1^2 = 31 = p</math><br><math>30 + 2^2 = 34 = 2\cdot 17 = 2p</math><br><math>30 + 3^2 = 39 = 3\cdot 13 = tp</math><br> 따라서 <math>m=30</math> 은 convenient<br> |
2009년 11월 6일 (금) 17:50 판
간단한 소개
- 이차형식에 대한 오일러의 연구에서 발견
- Numeri Idonei
- 현재까지 알려진 목록
- 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 18, 21, 22, 24, 25, 28, 30, 33, 37, 40, 42, 45, 48, 57, 58, 60, 70, 72, 78, 85, 88, 93, 102, 105, 112, 120, 130, 133, 165, 168, 177, 190, 210, 232, 240, 253, 273, 280, 312, 330, 345, 357, 385, 408, 462, 520, 760, 840, 1320, 1365, 1848
- 이 목록이 완전한 목록인지는 아직 미해결 문제. 있으면 하나가 더 있음이 알려져 있다
오일러의 정의
- 자연수 \(m\)이 다음 조건을 만족시킬 때, convenient 라고 한다
홀수 \(n > 1\) 이 이차형식\(x^2+my^2\)에 의하여 단 한가지 방법으로 표현되면, (\(x,y\)는 음이 아닌 정수이고 \((x, my) = 1\)), \(n\)은 소수이다
오일러의 판정법
- 증명되지 않은 오일러의 판정법
A number \(m\in \mathbb{N}\) is convenient
if and only if
every natural number \(n\) of the form \(n = m + x^2 <4m\) with \(x\in \mathbb{N}\), \((x,m) = 1\) is necessarily of one of the four forms \(n = p\), \(n = 2p\), \(n = p^2\), \(n = 2^s\) where \(p\) is an odd prime number and \(s\in \mathbb{N}\)
오일러의 판정법 사용예
- \(m=13\)
\(13 + 1^2 = 14 = 2p\)
\(13 + 2^2 = 17 = p\)
\(13 + 3^2 = 22 = 2p\)
\(13 + 4^2 = 29 = p\)
\(13 + 5^2 = 38 = 2p\)
\(13 + 6^2 = 49 = p^2\)
따라서 \(m=13\) 은 convenient - \(m=14\)
\(14 + 1^2 = 15 = 3 \cdot 5\)
따라서 \(m=14\) 는 convenient 가 아님
오일러가 발견한 성질들
1. If m is convenient and \(m = t^2\), then \(t=1,2,3,4,5\).
2. If m is convenient and \(m \equiv 3 \pmod 4\), then 4m is convenient.
3. If m is convenient and \(m \equiv 4 \pmod 8\), then 4m is convenient.
4. If \(k^2 m\) is convenient, then m is convenient.
5. If m is convenient and \(m \equiv 2 \pmod 3\) , then 9m is convenient.
6. If m > 1 is convenient and \(m \equiv 1 \pmod 4\) , then 4m is not convenient.
7. If m is convenient and \(m \equiv 2 \pmod 4\), then 4m is convenient.
8. If m is convenient and \(m \equiv 8 \pmod {16}\), then 4m is not convenient.
9. If m is convenient and m =- 16 modulo 32, then 4m is not convenient.
10. If m is convenient and m + a 2 = p2 < 4m for a prime p, then 4m is not convenient.
가우스의 판정법
(a) A number \(m\in \mathbb{N}\) is convenient if and only if every genus of properly primitive integral binary quadratic forms of determinant d = - m contains precisely one proper class of properly primitive forms;
or alternatively,
(b) A number \(m\in \mathbb{N}\) is convenient if and only if every proper class of properly primitive integral binary quadratic forms with determinant d = -m is a proper ambiguous class of properly primitive forms.
Grube의 판정법 1
A number \(m\in \mathbb{N}\) is convenient if and only if every natural number n of the form
\(n = m + x^2\)with \(x\in \mathbb{N}\) and \(x < \sqrt{\frac{m}{3}}\) admits no factorizations \(n = rs\) with \(s \geq r \geq 2x\), \(r, s \in \mathbb{N}\) except those of the form \(r=s\) or \(r=2x\).
Grube의 판정법 사용예
- \(m=48\)
\(48 + 1^2 = 49 = 7\cdot 7 : r = s\)
\(48 + 2^2 = 52 = 4\cdot 13 : r = 2x\)
\(48 + 3^2 = 57\)
\(48 + 4^2 = 64 = 8\cdot 8 : r = s\)
따라서 \(m=48\) 은 convenient - \(m=60\)
\(60 + 1^2 = 61\)
\(60 + 2^2 = 64 = 8\cdot 8 : r = s\)
\(60 + 3^2 = 69\)
\(60 + 4^2 = 76\)
따라서 \(m=60\) 은 convenient - \(m=11\)
\(11+1^2=12=3\cdot 4\)
따라서 \(m=11\) 은 convenient가 아님
Grube의 판정법 2
Suppose \(m\in \mathbb{N}\) is not divisible by a square and suppose \(m\neq 3,7,15\)
Then m is convenient if and only if every natural number n of the form
\(n = m + x^2\)with \(x\in \mathbb{N}\) and \(x < \sqrt{\frac{m}{3}}\)
is also of the form
\(n = tp\), \(n = 2tp\) or \(n = p^2\)
where t is a divisor of m, and p is an odd prime number.
Grube의 판정법 2 사용예
- \(m=30\)
\(30 + 1^2 = 31 = p\)
\(30 + 2^2 = 34 = 2\cdot 17 = 2p\)
\(30 + 3^2 = 39 = 3\cdot 13 = tp\)
따라서 \(m=30\) 은 convenient
또다른 성질들
Let \(m\in \mathbb{N}\) . Then all prime numbers p of the form \(p = x^2 + my^2\)with \(x,y \in \mathbb{N}\) can be characterized by congruence conditions with respect to a single modulus f if and only if m is convenient.
class number 에 따른 분류
\(h(-4n)\) | n's with one class per genus |
1 | 1,2,3,4,7 |
2 | 5,6,8,9,10,12,13,15,16,18,22,25,28,37,58 |
4 | 21,24,30,33,40,42,45,48,57,60,70,72,78,85,88,93,102,112,130,133,177,190,232,253 |
8 | 105,120,165,168,210,240,273,280,312,330,345,357,385,408,462,520,760 |
16 | 840,1320,1365,1848 |
메모
- Baltes, H. P. and Hill E. R.: Spectra of Finite Systems. Bibliographisches Institut, Z~irich, 1976
- Chowla, S.: An Extension of Heilbronn's Class Number Theorem. Quarterly J. Math. (Oxford) 5 (1934), 304-307
- Euler, L.: Opera Omnia. Series Prima. Teubner, Leipzig, 1911-
- Fermat, P.: Oeuvres. Tome 2, 212-217, Gauthier-Villars, Paris, 1894
- Frei, G.: On the Development of the Genus of Quadratic Forms. Ann. Sci. Math. Qu6bec 3 (1979), 5-62
- Frei, G.: Les nombres convenables de Leonhard Euler.(To appear)
- Gauss, C. F.: Disquisitiones arithmeticae. Leipzig, 1801(or: Untersuchungen tiber h6here Mathematik. Herausgegeben von H. Maser, Springer, Berlin, 1889)
- Grube, F.: Ueber einige Eulersche S/itze aus der Theorie der quadratischen Formen. Zeitschrift f~ir Mathematik und Physik 19 (1874), 492-519
- Lagrange, J.-L.: Recherches d'arithm6tique, 1773 et 1775. Oeuvres, Tome 3, Gauthier-Villars, Paris, 1867
- Steinig, J.: On Euler's Idoenal Numbers. Elemente der Mathematik 21 (1966), 73-88
재미있는 사실
관련된 단원
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- 도서내검색
- 도서검색
참고할만한 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Idoneal_number
- http://mathworld.wolfram.com/IdonealNumber.html
관련논문
- Leonhard euler’s convenient number
- Euler_s_convenient_numbers.pdf
- Günther Frei, The Mathematical Intelligencer, Volume 7, Number 3 / 1985년 9월
- Chowla, S. and Briggs, W. E.: On discriminants of binary quadratic forms with a single class in each genus. Canadian J. Math. 6 (1954), 463-470
- Grosswald, E.: Negative discriminants of binary quadratic forms with one class in each genus. Acta Arithmetica 8 (1963), 295-306
- Weinberger, P. J.: Exponents of the class groups of complex quadratic fields. Acta Arithmetica 22 (1973), 117-124