"울프람알파의 활용"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 위치를 <a href="/pages/4765977">다양한 프로그램(소프트 웨어)</a>페이지로 이동하였습니다.)
1번째 줄: 1번째 줄:
 +
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
 +
 +
* [[울프람알파의 활용]]
 +
 +
 
 +
 +
 
 +
 
<h5>개요</h5>
 
<h5>개요</h5>
  
34번째 줄: 42번째 줄:
  
 
<h5>그래프 그리기</h5>
 
<h5>그래프 그리기</h5>
 
'''10.3. 56'''
 
 
 
 
 
(c)
 
 
<math>r=\cos \frac{\theta}{3}</math>
 
 
[/pages/4176465/attachments/2110527 MSP74719784071iad69b2900005cid5ibigi61dg94.gif]
 
 
 [http://www.wolframalpha.com/input/?i=r%3Dcos+%28theta/3%29 http://www.wolframalpha.com/input/?i=r%3Dcos+(theta/3)]
 
 
 
 
 
(d)
 
 
<math>r=1+2\cos\theta</math>
 
 
  [/pages/4176465/attachments/2110537 MSP11271978443hf7aa7h2f00002bd5bh2db919dc1f.gif]
 
 
 [http://www.wolframalpha.com/input/?i=r%3D1%2B2+cos+%28theta%29 http://www.wolframalpha.com/input/?i=r%3D1%2B2+cos+(theta)]
 
 
(e) 
 
 
<math>r=2+\sin 3\theta</math>
 
 
[http://www.wolframalpha.com/input/?i=r%3D2%2Bsin%283thetA%29 http://www.wolframalpha.com/input/?i=r%3D2%2Bsin(3thetA)]
 
 
 [/pages/4176465/attachments/2110539 MSP47019784919haafi5hc00002h164hgd33f4i46i.gif]
 
 
(f)
 
 
<math>r=1+2\sin 3\theta</math>
 
 
 [http://www.wolframalpha.com/input/?i=r%3D1%2B2sin%283theta%29 http://www.wolframalpha.com/input/?i=r%3D1%2B2sin(3theta)]
 
 
[/pages/4176465/attachments/2110535 MSP6981978475e4574h83h00003a7ga0a9g5d06c13.gif]
 
 
 
 
 
 
 
 
 
 
 
'''10.4.44.'''
 
 
[http://www.wolframalpha.com/input/?i=%28r-%288%2B8sin+theta%29%29%28r+sin+theta+-4%29%3D0 http://www.wolframalpha.com/input/?i=(r-(8%2B8sin+theta))(r+sin+theta+-4)%3D0]
 
 
[/pages/4176465/attachments/2110589 1MSP761197847h1hg25e7he00004g3ehh9ag590ea81.gif]
 
 
Note that <math>2\sin^2 \alpha +2\sin \alpha-1=0</math>.
 
 
Since <math>0< \alpha <\frac{\pi}{2}</math>, <math>\sin \alpha =\frac{\sqrt 3 -1}{2}</math> and <math>\cos \alpha =\sqrt{\frac{\sqrt 3}{2}}</math>
 
 
 
 
 
<math>\frac{1}{2}\int_{\alpha}^{\pi-\alpha}r^2 d\theta=\int_{\alpha}^{\pi/2}r^2 d\theta=\int_{\alpha}^{\pi/2}64(1+\sin\theta)^2d\theta</math>
 
 
<math>=64\int_{\alpha}^{\pi/2}(1+\sin\theta)^2d\theta=64\int_{\alpha}^{\pi/2}1+2\sin\theta+\sin^2\theta d\theta</math>
 
 
<math>=64[\frac{3}{2}\theta - 2 \cos \theta- \frac{1}{4}\sin 2\theta]_{\alpha}^{\pi/2}=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}</math>
 
 
<math>=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}=48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha</math>
 
 
We need to subtract from this the area of the triangle which is given by :
 
 
<math>2\times \frac{1}{2}\cdot 4 (8+8\sin\alpha)\sin (\pi/2-\alpha)=32(1+\sin\alpha)\cos \alpha=32\cos \alpha+16 \sin 2\alpha</math>
 
 
So the area will be given by :
 
 
<math>48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha-(32\cos \alpha+16 \sin 2\alpha)=48\pi-96\alpha+96\cos \alpha\approx 204.16</math>
 
 
[http://www.wolframalpha.com/input/?i=N%5B48pi+-96%28arcsin%7B%28sqrt+3+-+1%29/2%7D%29%2B96%28sqrt%28%28sqrt+3%29/2%29%29,10%5D http://www.wolframalpha.com/input/?i=N[48pi+-96(arcsin{(sqrt+3+-+1)/2})%2B96(sqrt((sqrt+3)/2)),10]]
 
 
 
 
 
 
 
 
'''10.4.55.'''
 
 
(b)
 
 
<math>r^2=\cos 2\theta</math>
 
 
[/pages/4176465/attachments/2110541 MSP71919784049c09bb98700001095e8fadhf5gc4d.gif]
 
 
[http://www.wolframalpha.com/input/?i=r%5E2%3Dcos+%282theta%29 http://www.wolframalpha.com/input/?i=r^2%3Dcos+(2theta)]
 
 
 
 
  
 
 
 
 

2011년 1월 29일 (토) 16:03 판