"월리스 곱 (Wallis product formula)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
5번째 줄: 5번째 줄:
 
<math>\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}</math>
 
<math>\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}</math>
  
* [http://bomber0.byus.net/index.php/2008/07/12/686 스털링이 드무아브르가 남긴 문제를 해결]하고 역사에 이름을 남길 때, 스털링은 바로 이 월리스의 공식을 사용했다.
+
* [http://bomber0.byus.net/index.php/2008/07/12/686 스털링이 드무아브르가 남긴 문제를 해결]할때 이 월리스의 공식을 사용
  
 
<math>\frac{\pi}{2}=\lim_{n\to\infty}{1\over{2n}}\cdot{{2^{4n}\,(n!)^4}\over{((2n)!)^2}}</math>
 
<math>\frac{\pi}{2}=\lim_{n\to\infty}{1\over{2n}}\cdot{{2^{4n}\,(n!)^4}\over{((2n)!)^2}}</math>
15번째 줄: 15번째 줄:
 
 
 
 
  
<h5>증명</h5>
+
 
 +
 
 +
<h5>월리스의 증명</h5>
  
 
* [[오일러 베타적분(베타함수)|오일러 베타적분]]<br>
 
* [[오일러 베타적분(베타함수)|오일러 베타적분]]<br>
  
 
<math>\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}</math>
 
<math>\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}</math>
 +
 +
 
 +
 +
 
 +
 +
<h5>역사</h5>
 +
 +
* [[수학사연표 (역사)|수학사연표]]
 +
* 1655 - 존 월리스가 <em style="">Arithmetica Infinitorum</em>를 저술
  
 
 
 
 

2009년 11월 25일 (수) 19:41 판

간단한 소개
  • 1655년, 영국 수학자 월리스(John Wallis)는 월리스 곱이라 불려지는 다음과 같은 공식을 남긴다.

\(\lim_{n \rightarrow \infty}\big(\frac{2}{1}\cdot \frac{2}{3}\cdot \frac{4}{3}\cdot \frac{4}{5}\cdots \frac{2n}{2n - 1} \cdot\frac{2n}{2n+1}\big) = \frac{\pi}{2}\)

\(\frac{\pi}{2}=\lim_{n\to\infty}{1\over{2n}}\cdot{{2^{4n}\,(n!)^4}\over{((2n)!)^2}}\)

  • 이는 다음을 말해준다.

\(\frac{1}{2^{2n}}{{(2n)!}\over{n!n!}}=\frac{1}{2^{2n}}{2n\choose n}\approx\frac{1}{\sqrt{\pi n}}\)

 

 

월리스의 증명

\(\int_0^{\frac{\pi}{2}}\sin^{p}\theta{d\theta}= \frac{1}{2}B(\frac{p+1}{2},\frac{1}{2})=\frac{\sqrt{\pi}\Gamma(\frac{p}{2}+\frac{1}{2})}{2\Gamma(\frac{p}{2}+1)}\)

 

 

역사

 

 

메모
  • 드무아브르의 발견은 대략 1730년대 즈음
  • 데카르트 1596년 3월부터 1650년 2월까지, 뉴턴이 살았던 때가 1643년 1월부터 1727년 3월까지

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

표준적인 도서 및 추천도서

 

위키링크

 

블로그