"접속 (connection)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 접속 (connection)로 바꾸었습니다.)
1번째 줄: 1번째 줄:
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
  
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 +
 +
* 방향미분의 일반화
 +
* 벡터장 <math>{\mathbf v}</math>와 벡터장 <math> {\mathbf Y}</math>에 대해서 정의되며, 또다른 벡터장 <math>\nabla_{\mathbf v} {\mathbf Y}</math> 을 얻는다
 +
 +
 
 +
 +
 
 +
 +
<h5>성질</h5>
 +
 +
*  다음 성질을 가진다<br><math>\begin{align}&\nabla_X(Y_1 + Y_2) = \nabla_XY_1 + \nabla_XY_2\\ &\nabla_{X_1 + X_2}Y = \nabla_{X_1}Y + \nabla_{X_2}Y\\ &\nabla_{X}(fY) = f\nabla_XY + X(f)Y\\ &\nabla_{fX}Y = f\nabla_XY\end{align}</math><br>
 +
*  적당한 1-form <math>A_{ij}</math>에 대하여, 다음과 같이 표현할수 있다<br><math>\nabla X_i = \sum_{j=1}^{2} A_{ij}\otimes X_j= A_{i}^{j}\otimes X_j</math><br><math>A_{ij}= A_{i}^{j}</math> 로 두었다<br>
 +
*  여기서 1-form <math>A_{ij}</math>는 벡터장 <math>{\mathbf v}</math>에 대하여 다음을 만족시킴<br><math>\nabla_{\mathbf v} X_i = (\nabla X_i)({\mathbf v})= \sum_{j=1}^{2} A_{ij}({\mathbf v}) X_j</math><br>
 +
*  이때의 <math>A=(A_{ij})</math> 를 접속 1형식(1-form)이라고 부른다<br>
 +
* <math>F=dA-A\wedge A</math> 는 곡률 2형식(2-form) 이라 부른다<br>
 +
 +
 
 +
 +
 
 +
 +
<h5>레비치비타 기호</h5>
 +
 +
*   <br>
 +
 +
 
 +
 +
 
 +
 +
<h5>재미있는 사실</h5>
 +
 +
 
 +
 +
* Math Overflow http://mathoverflow.net/search?q=
 +
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 +
 +
 
 +
 +
 
 +
 +
<h5>역사</h5>
 +
 +
 
 +
 +
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 +
* [[수학사연표 (역사)|수학사연표]]
 +
*  
 +
 +
 
 +
 +
 
 +
 +
<h5>메모</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5>관련된 항목들</h5>
 +
 +
 
 +
 +
 
 +
 +
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 +
 +
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 +
* 발음사전 http://www.forvo.com/search/Levi-Civita
 +
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 +
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 +
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 +
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 +
 +
 
 +
 +
 
 +
 +
<h5>사전 형태의 자료</h5>
 +
 +
* http://ko.wikipedia.org/wiki/
 +
* http://en.wikipedia.org/wiki/connection_form
 +
* http://www.wolframalpha.com/input/?i=
 +
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 +
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 +
** http://www.research.att.com/~njas/sequences/?q=
 +
 +
 
 +
 +
 
 +
 +
<h5>관련논문</h5>
 +
 +
* [http://www.jstor.org/stable/2319607 The Geometry of Connections]<br>
 +
** R. S. Millman and Ann K. Stehney, <cite>The American Mathematical Monthly</cite>, Vol. 80, No. 5 (May, 1973), pp. 475-500
 +
 +
* http://www.jstor.org/action/doBasicSearch?Query=
 +
* http://www.ams.org/mathscinet
 +
* http://dx.doi.org/
 +
 +
 
 +
 +
 
 +
 +
<h5>관련도서</h5>
 +
 +
*  도서내검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/contentSearch.do?query=
 +
*  도서검색<br>
 +
** http://books.google.com/books?q=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
** http://book.daum.net/search/mainSearch.do?query=
 +
 +
 
 +
 +
 
 +
 +
<h5>관련기사</h5>
 +
 +
*  네이버 뉴스 검색 (키워드 수정)<br>
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 +
 +
 
 +
 +
 
 +
 +
<h5>블로그</h5>
 +
 +
*  구글 블로그 검색<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 +
* [http://math.dongascience.com/ 수학동아]
 +
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 +
* [http://betterexplained.com/ BetterExplained]

2010년 1월 27일 (수) 07:48 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 방향미분의 일반화
  • 벡터장 \({\mathbf v}\)와 벡터장 \( {\mathbf Y}\)에 대해서 정의되며, 또다른 벡터장 \(\nabla_{\mathbf v} {\mathbf Y}\) 을 얻는다

 

 

성질
  • 다음 성질을 가진다
    \(\begin{align}&\nabla_X(Y_1 + Y_2) = \nabla_XY_1 + \nabla_XY_2\\ &\nabla_{X_1 + X_2}Y = \nabla_{X_1}Y + \nabla_{X_2}Y\\ &\nabla_{X}(fY) = f\nabla_XY + X(f)Y\\ &\nabla_{fX}Y = f\nabla_XY\end{align}\)
  • 적당한 1-form \(A_{ij}\)에 대하여, 다음과 같이 표현할수 있다
    \(\nabla X_i = \sum_{j=1}^{2} A_{ij}\otimes X_j= A_{i}^{j}\otimes X_j\)
    \(A_{ij}= A_{i}^{j}\) 로 두었다
  • 여기서 1-form \(A_{ij}\)는 벡터장 \({\mathbf v}\)에 대하여 다음을 만족시킴
    \(\nabla_{\mathbf v} X_i = (\nabla X_i)({\mathbf v})= \sum_{j=1}^{2} A_{ij}({\mathbf v}) X_j\)
  • 이때의 \(A=(A_{ij})\) 를 접속 1형식(1-form)이라고 부른다
  • \(F=dA-A\wedge A\) 는 곡률 2형식(2-form) 이라 부른다

 

 

레비치비타 기호
  •  

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문
  • The Geometry of Connections
    • R. S. Millman and Ann K. Stehney, The American Mathematical Monthly, Vol. 80, No. 5 (May, 1973), pp. 475-500

 

 

관련도서

 

 

관련기사

 

 

블로그