"정다면체와 모듈라 연분수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>이 항목의 수학노트 원문주소</h5>
+
==이 항목의 수학노트 원문주소</h5>
  
 
 
 
 
5번째 줄: 5번째 줄:
 
 
 
 
  
<h5>개요</h5>
+
==개요</h5>
  
 
[http://tpiezas.wordpress.com/2012/07/22/hypergeometric-formulas-for-ramanujans-continued-fractions-1/ ]
 
[http://tpiezas.wordpress.com/2012/07/22/hypergeometric-formulas-for-ramanujans-continued-fractions-1/ ]
20번째 줄: 20번째 줄:
 
 
 
 
  
<h5>정사면체</h5>
+
==정사면체</h5>
  
 
<math>\begin{aligned}&c=c(q)=\cfrac{q^{1/3}}{1 + \cfrac{q+q^2}{1 + \cfrac{q^2+q^4}{1 + \cfrac{q^3+q^6}{1 + \ddots}}}} = q^{1/3}\prod_{n=1}^\infty \frac{(1-q^{6n-1})(1-q^{6n-5})}{(1-q^{6n-3})^2}\end{aligned}</math>
 
<math>\begin{aligned}&c=c(q)=\cfrac{q^{1/3}}{1 + \cfrac{q+q^2}{1 + \cfrac{q^2+q^4}{1 + \cfrac{q^3+q^6}{1 + \ddots}}}} = q^{1/3}\prod_{n=1}^\infty \frac{(1-q^{6n-1})(1-q^{6n-5})}{(1-q^{6n-3})^2}\end{aligned}</math>
28번째 줄: 28번째 줄:
 
 
 
 
  
<h5>정팔면체</h5>
+
==정팔면체</h5>
  
 
* [[정팔면체와 모듈라 연분수]]
 
* [[정팔면체와 모듈라 연분수]]
40번째 줄: 40번째 줄:
 
 
 
 
  
<h5>정이십면체</h5>
+
==정이십면체</h5>
  
 
* [[정이십면체와 모듈라 연분수]]
 
* [[정이십면체와 모듈라 연분수]]
54번째 줄: 54번째 줄:
 
 
 
 
  
<h5>역사</h5>
+
==역사</h5>
  
 
 
 
 
65번째 줄: 65번째 줄:
 
 
 
 
  
<h5>메모</h5>
+
==메모</h5>
  
 
* http://tpiezas.wordpress.com/2012/07/22/hypergeometric-formulas-for-ramanujans-continued-fractions-1/
 
* http://tpiezas.wordpress.com/2012/07/22/hypergeometric-formulas-for-ramanujans-continued-fractions-1/
75번째 줄: 75번째 줄:
 
 
 
 
  
<h5>관련된 항목들</h5>
+
==관련된 항목들</h5>
  
 
 
 
 
81번째 줄: 81번째 줄:
 
 
 
 
  
<h5>수학용어번역</h5>
+
==수학용어번역</h5>
  
 
*  단어사전<br>
 
*  단어사전<br>
98번째 줄: 98번째 줄:
 
 
 
 
  
<h5>매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스</h5>
  
 
*  
 
*  
113번째 줄: 113번째 줄:
 
 
 
 
  
<h5>사전 형태의 자료</h5>
+
==사전 형태의 자료</h5>
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
125번째 줄: 125번째 줄:
 
 
 
 
  
<h5>리뷰논문, 에세이, 강의노트</h5>
+
==리뷰논문, 에세이, 강의노트</h5>
  
 
 
 
 
133번째 줄: 133번째 줄:
 
 
 
 
  
<h5>관련논문</h5>
+
==관련논문</h5>
  
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.jstor.org/action/doBasicSearch?Query=
143번째 줄: 143번째 줄:
 
 
 
 
  
<h5>관련도서</h5>
+
==관련도서</h5>
  
 
*  도서내검색<br>
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
** http://book.daum.net/search/contentSearch.do?query=

2012년 11월 1일 (목) 03:29 판

==이 항목의 수학노트 원문주소

 

 

==개요

[1]

  • \(\Gamma/\Gamma(3)\simeq A_4\)
  • \(\Gamma/\Gamma(4)\simeq S_4\)
  • \(\Gamma/\Gamma(5)\simeq A_5\)
  • \(\Gamma/\Gamma(7)\simeq \operatorname{PSL}(2,\mathbb{F}_7)\)

 

 

==정사면체

\(\begin{aligned}&c=c(q)=\cfrac{q^{1/3}}{1 + \cfrac{q+q^2}{1 + \cfrac{q^2+q^4}{1 + \cfrac{q^3+q^6}{1 + \ddots}}}} = q^{1/3}\prod_{n=1}^\infty \frac{(1-q^{6n-1})(1-q^{6n-5})}{(1-q^{6n-3})^2}\end{aligned}\)

 

 

==정팔면체

\(\begin{aligned}&u = u(q) = \cfrac{\sqrt{2}\,q^{1/8}}{1 + \cfrac{q}{1+q + \cfrac{q^2}{1+q^2 + \cfrac{q^3}{1+q^3 + \ddots}}}} = \sqrt{2}\,q^{1/8}\prod_{n=1}^\infty\frac{1-q^{2n-1}}{(1-q^{4n-2})^2} \end{aligned}\)

 

 

 

==정이십면체

\(\begin{aligned}&r(q) = \cfrac{q^{1/5}}{1 + \cfrac{q}{1 + \cfrac{q^2}{1 + \cfrac{q^3}{1 + \ddots}}}} = \frac{q^{11/60}H(q)}{q^{-1/60}G(q)} = \frac{q^{11/60}\prod_{n=1}^\infty \frac{1}{(1-q^{5n-2})(1-q^{5n-3})}}{q^{-1/60}\prod_{n=1}^\infty \frac{1}{(1-q^{5n-1})(q^{5n-4})}}\end{aligned}\)

 

 

 

 

==역사

 

 

 

==메모

 

 

==관련된 항목들

 

 

==수학용어번역

 

 

==매스매티카 파일 및 계산 리소스

 

 

==사전 형태의 자료

 

 

==리뷰논문, 에세이, 강의노트

 

 

 

==관련논문

 

 

==관련도서