"교란순열 (derangement)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 derangement로 바꾸었습니다.)
9번째 줄: 9번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
  
* number of permutations of n points without fixed points
+
* 고정점을 갖지 않는 순열의 개수(number of permutations of n points without fixed points)
 
*  n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않는 경우의 수 <math>D_n</math><br>
 
*  n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않는 경우의 수 <math>D_n</math><br>
 
*  목욕탕에 n명의 사람이 있다. 몇 사람씩 그룹을 만들어 동그랗게 서서, 서로 등을 밀어주는 경우의 수 <math>D_n</math>은 얼마인가? 혼자서 자기 등을 밀 수는 없다.<br>
 
*  목욕탕에 n명의 사람이 있다. 몇 사람씩 그룹을 만들어 동그랗게 서서, 서로 등을 밀어주는 경우의 수 <math>D_n</math>은 얼마인가? 혼자서 자기 등을 밀 수는 없다.<br>
 
*  이 수열 <math>D_n</math>에는 (arrangement의 반대 개념으로) [http://en.wikipedia.org/wiki/Derangement derangement] 라는 이름이 붙어 있음<br><math>D_0=1,D_1=0,D_2=1,D_3=2,D_4=9,D_5=44,D_6=265,\cdots</math><br>
 
*  이 수열 <math>D_n</math>에는 (arrangement의 반대 개념으로) [http://en.wikipedia.org/wiki/Derangement derangement] 라는 이름이 붙어 있음<br><math>D_0=1,D_1=0,D_2=1,D_3=2,D_4=9,D_5=44,D_6=265,\cdots</math><br>
 +
*  일반항<br><math>D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}</math><br>
  
 
 
 
 
50번째 줄: 51번째 줄:
 
<math>\sum_{n=0}^{\infty}\frac{D_n-nD_{n-1}}{n!}x^n=\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}x^n=e^{-x}</math>
 
<math>\sum_{n=0}^{\infty}\frac{D_n-nD_{n-1}}{n!}x^n=\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}x^n=e^{-x}</math>
  
 
+
좌변을 정리하면,
  
좌변을 계산하면,
+
<math>\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n-\sum_{n=0}^{\infty}\frac{nD_{n-1}}{n!}x^n=f(x)-\sum_{n=1}^{\infty}\frac{D_{n-1}}{(n-1)!}x^n=f(x)-xf(x)</math>
  
 
+
따라서,
  
<math>\text{LHS}=\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n-\sum_{n=0}^{\infty}\frac{nD_{n-1}}{n!}x^n=f(x)-\sum_{n=1}^{\infty}\frac{D_{n-1}}{(n-1)!}x^n=f(x)-xf(x)</math>
+
<math>f(x)=\frac{e^{-x}}{1-x}=(1+x+x^2+x^3+\cdots)(1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\cdots)</math> ■
  
 
 
 
 
  
따라서,
+
 
  
 
+
<h5>수열의 일반항</h5>
  
<math>f(x)=\frac{e^{-x}}{1-x}=(1+x+x^2+x^3+\cdots)(1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\cdots)</math> ■
+
*  위에서 얻은 생성함수로부터 수열의 일반항을 구할 수 있다<br><math>\frac{D_n}{n!}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^n\frac{1}{n!}</math><br><math>D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}</math><br>
  
 
 
 
 
70번째 줄: 71번째 줄:
 
 
 
 
  
<h5>수열의 일반항</h5>
+
 
  
*  위에서 얻은 생성함수로부터 수열의 일반항을 구할 수 있다<br><math>\frac{D_n}{n!}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^n\frac{1}{n!}</math><br>
+
<h5></h5>
  
 
 
 
 
91번째 줄: 92번째 줄:
 
(n이 충분히 클 때) n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않을 확률은 <math>\frac{1}{e}</math>에 가깝다.
 
(n이 충분히 클 때) n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않을 확률은 <math>\frac{1}{e}</math>에 가깝다.
 
</blockquote>
 
</blockquote>
 
 
 
 
<h5>재미있는 사실</h5>
 
 
 
 
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
  
 
 
 
 
129번째 줄: 122번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
  
* http://www.google.com/dictionary?langpair=en|ko&q=
+
* 난순열, 완전순열 등의 용어가 활용되고 있음
 +
* [http://www.google.com/dictionary?langpair=en%7Cko&q=derangement http://www.google.com/dictionary?langpair=en|ko&q=derangement]
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
+
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=derangement
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
  
140번째 줄: 134번째 줄:
 
<h5>사전 형태의 자료</h5>
 
<h5>사전 형태의 자료</h5>
  
* http://ko.wikipedia.org/wiki/
+
* [http://ko.wikipedia.org/wiki/%EC%99%84%EC%A0%84%EC%88%9C%EC%97%B4 http://ko.wikipedia.org/wiki/완전순열]
* http://en.wikipedia.org/wiki/
+
* [http://ko.wikipedia.org/wiki/%ED%8F%AC%ED%95%A8-%EB%B0%B0%EC%A0%9C%EC%9D%98_%EC%9B%90%EB%A6%AC http://ko.wikipedia.org/wiki/포함-배제의_원리]
 +
* http://en.wikipedia.org/wiki/derangement
 
* http://www.wolframalpha.com/input/?i=
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]

2012년 1월 4일 (수) 15:58 판

이 항목의 스프링노트 원문주소

 

 

개요
  • 고정점을 갖지 않는 순열의 개수(number of permutations of n points without fixed points)
  • n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않는 경우의 수 \(D_n\)
  • 목욕탕에 n명의 사람이 있다. 몇 사람씩 그룹을 만들어 동그랗게 서서, 서로 등을 밀어주는 경우의 수 \(D_n\)은 얼마인가? 혼자서 자기 등을 밀 수는 없다.
  • 이 수열 \(D_n\)에는 (arrangement의 반대 개념으로) derangement 라는 이름이 붙어 있음
    \(D_0=1,D_1=0,D_2=1,D_3=2,D_4=9,D_5=44,D_6=265,\cdots\)
  • 일반항
    \(D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}\)

 

 

\(D_4\)의 경우

예를 들어 1,2,3,4 네 사람이 있는 경우를 생각해 보자. 말을 줄이기 위해, 기호를 하나 정의한다. (abc…d) 라는 것은 a는 b의 등을 밀고, b는 c의 등을 밀고, … , d는 a의 등을 미는 것을 뜻한다. 1,2,3,4 네 명이서 서로 등을 밀어 주는 경우의 수는 다음과 같이 셀 수 있다.

(1234), (1243), (1324), (1342), (1423), (1432), (12)(34), (13)(24), (14)(23)

따라서 모두 9가지 경우가 있다. 즉 \(D_4=9\)

 

 

점화식
  • \(D_n=(n-1)(D_{n-1}+D_{n-2})\)
  • \(D_n-nD_{n-1}=-(D_{n-1}-(n-1)D_{n-2})\)
  • \(D_n-nD_{n-1}=(-1)^n\)

 

 

생성함수
  • 지수생성함수는 다음과 같다
    \(f(x)=\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n=\frac{e^{-x}}{1-x}\)

(증명)

위에서 얻은 점화식을 사용하면,

\(\sum_{n=0}^{\infty}\frac{D_n-nD_{n-1}}{n!}x^n=\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}x^n=e^{-x}\)

좌변을 정리하면,

\(\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n-\sum_{n=0}^{\infty}\frac{nD_{n-1}}{n!}x^n=f(x)-\sum_{n=1}^{\infty}\frac{D_{n-1}}{(n-1)!}x^n=f(x)-xf(x)\)

따라서,

\(f(x)=\frac{e^{-x}}{1-x}=(1+x+x^2+x^3+\cdots)(1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\cdots)\) ■

 

 

수열의 일반항
  • 위에서 얻은 생성함수로부터 수열의 일반항을 구할 수 있다
    \(\frac{D_n}{n!}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^n\frac{1}{n!}\)
    \(D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}\)

 

 

 

 

 

자연상수와의 관계

 

 

이 식으로부터 다음과 같은 결론을 얻을 수 있다.

 

(n이 충분히 클 때) n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않을 확률은 \(\frac{1}{e}\)에 가깝다.

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그