"교란순열 (derangement)"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 이름을 derangement로 바꾸었습니다.) |
|||
9번째 줄: | 9번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5> | ||
− | * number of permutations of n points without fixed points | + | * 고정점을 갖지 않는 순열의 개수(number of permutations of n points without fixed points) |
* n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않는 경우의 수 <math>D_n</math><br> | * n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않는 경우의 수 <math>D_n</math><br> | ||
* 목욕탕에 n명의 사람이 있다. 몇 사람씩 그룹을 만들어 동그랗게 서서, 서로 등을 밀어주는 경우의 수 <math>D_n</math>은 얼마인가? 혼자서 자기 등을 밀 수는 없다.<br> | * 목욕탕에 n명의 사람이 있다. 몇 사람씩 그룹을 만들어 동그랗게 서서, 서로 등을 밀어주는 경우의 수 <math>D_n</math>은 얼마인가? 혼자서 자기 등을 밀 수는 없다.<br> | ||
* 이 수열 <math>D_n</math>에는 (arrangement의 반대 개념으로) [http://en.wikipedia.org/wiki/Derangement derangement] 라는 이름이 붙어 있음<br><math>D_0=1,D_1=0,D_2=1,D_3=2,D_4=9,D_5=44,D_6=265,\cdots</math><br> | * 이 수열 <math>D_n</math>에는 (arrangement의 반대 개념으로) [http://en.wikipedia.org/wiki/Derangement derangement] 라는 이름이 붙어 있음<br><math>D_0=1,D_1=0,D_2=1,D_3=2,D_4=9,D_5=44,D_6=265,\cdots</math><br> | ||
+ | * 일반항<br><math>D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}</math><br> | ||
50번째 줄: | 51번째 줄: | ||
<math>\sum_{n=0}^{\infty}\frac{D_n-nD_{n-1}}{n!}x^n=\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}x^n=e^{-x}</math> | <math>\sum_{n=0}^{\infty}\frac{D_n-nD_{n-1}}{n!}x^n=\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}x^n=e^{-x}</math> | ||
− | + | 좌변을 정리하면, | |
− | + | <math>\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n-\sum_{n=0}^{\infty}\frac{nD_{n-1}}{n!}x^n=f(x)-\sum_{n=1}^{\infty}\frac{D_{n-1}}{(n-1)!}x^n=f(x)-xf(x)</math> | |
− | + | 따라서, | |
− | <math> | + | <math>f(x)=\frac{e^{-x}}{1-x}=(1+x+x^2+x^3+\cdots)(1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\cdots)</math> ■ |
− | + | ||
− | + | <h5>수열의 일반항</h5> | |
− | <math> | + | * 위에서 얻은 생성함수로부터 수열의 일반항을 구할 수 있다<br><math>\frac{D_n}{n!}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^n\frac{1}{n!}</math><br><math>D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}</math><br> |
70번째 줄: | 71번째 줄: | ||
− | + | ||
− | + | <h5>퐇</h5> | |
91번째 줄: | 92번째 줄: | ||
(n이 충분히 클 때) n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않을 확률은 <math>\frac{1}{e}</math>에 가깝다. | (n이 충분히 클 때) n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않을 확률은 <math>\frac{1}{e}</math>에 가깝다. | ||
</blockquote> | </blockquote> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
129번째 줄: | 122번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> | ||
− | * http://www.google.com/dictionary?langpair=en|ko&q= | + | * 난순열, 완전순열 등의 용어가 활용되고 있음 |
+ | * [http://www.google.com/dictionary?langpair=en%7Cko&q=derangement http://www.google.com/dictionary?langpair=en|ko&q=derangement] | ||
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
− | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | + | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=derangement |
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
140번째 줄: | 134번째 줄: | ||
<h5>사전 형태의 자료</h5> | <h5>사전 형태의 자료</h5> | ||
− | * http://ko.wikipedia.org/wiki/ | + | * [http://ko.wikipedia.org/wiki/%EC%99%84%EC%A0%84%EC%88%9C%EC%97%B4 http://ko.wikipedia.org/wiki/완전순열] |
− | * http://en.wikipedia.org/wiki/ | + | * [http://ko.wikipedia.org/wiki/%ED%8F%AC%ED%95%A8-%EB%B0%B0%EC%A0%9C%EC%9D%98_%EC%9B%90%EB%A6%AC http://ko.wikipedia.org/wiki/포함-배제의_원리] |
+ | * http://en.wikipedia.org/wiki/derangement | ||
* http://www.wolframalpha.com/input/?i= | * http://www.wolframalpha.com/input/?i= | ||
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] |
2012년 1월 4일 (수) 15:58 판
이 항목의 스프링노트 원문주소
개요
- 고정점을 갖지 않는 순열의 개수(number of permutations of n points without fixed points)
- n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않는 경우의 수 \(D_n\)
- 목욕탕에 n명의 사람이 있다. 몇 사람씩 그룹을 만들어 동그랗게 서서, 서로 등을 밀어주는 경우의 수 \(D_n\)은 얼마인가? 혼자서 자기 등을 밀 수는 없다.
- 이 수열 \(D_n\)에는 (arrangement의 반대 개념으로) derangement 라는 이름이 붙어 있음
\(D_0=1,D_1=0,D_2=1,D_3=2,D_4=9,D_5=44,D_6=265,\cdots\) - 일반항
\(D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}\)
\(D_4\)의 경우
예를 들어 1,2,3,4 네 사람이 있는 경우를 생각해 보자. 말을 줄이기 위해, 기호를 하나 정의한다. (abc…d) 라는 것은 a는 b의 등을 밀고, b는 c의 등을 밀고, … , d는 a의 등을 미는 것을 뜻한다. 1,2,3,4 네 명이서 서로 등을 밀어 주는 경우의 수는 다음과 같이 셀 수 있다.
(1234), (1243), (1324), (1342), (1423), (1432), (12)(34), (13)(24), (14)(23)
따라서 모두 9가지 경우가 있다. 즉 \(D_4=9\)
점화식
- \(D_n=(n-1)(D_{n-1}+D_{n-2})\)
- \(D_n-nD_{n-1}=-(D_{n-1}-(n-1)D_{n-2})\)
- \(D_n-nD_{n-1}=(-1)^n\)
생성함수
- 지수생성함수는 다음과 같다
\(f(x)=\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n=\frac{e^{-x}}{1-x}\)
(증명)
위에서 얻은 점화식을 사용하면,
\(\sum_{n=0}^{\infty}\frac{D_n-nD_{n-1}}{n!}x^n=\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}x^n=e^{-x}\)
좌변을 정리하면,
\(\sum_{n=0}^{\infty}\frac{D_n}{n!}x^n-\sum_{n=0}^{\infty}\frac{nD_{n-1}}{n!}x^n=f(x)-\sum_{n=1}^{\infty}\frac{D_{n-1}}{(n-1)!}x^n=f(x)-xf(x)\)
따라서,
\(f(x)=\frac{e^{-x}}{1-x}=(1+x+x^2+x^3+\cdots)(1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\cdots)\) ■
수열의 일반항
- 위에서 얻은 생성함수로부터 수열의 일반항을 구할 수 있다
\(\frac{D_n}{n!}=1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^n\frac{1}{n!}\)
\(D_n = n! \sum_{k=0}^{n}\frac{(-1)^k}{k!}\)
퐇
자연상수와의 관계
이 식으로부터 다음과 같은 결론을 얻을 수 있다.
(n이 충분히 클 때) n명의 사람이 있고, 그들의 이름이 써진 명찰 n개가 있다. 명찰을 랜덤하게 나눠줬을 때, 단 한 사람도 자기 명찰을 받지 않을 확률은 \(\frac{1}{e}\)에 가깝다.
역사
메모
관련된 항목들
수학용어번역
- 난순열, 완전순열 등의 용어가 활용되고 있음
- http://www.google.com/dictionary?langpair=en|ko&q=derangement
- 대한수학회 수학 학술 용어집
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/완전순열
- http://ko.wikipedia.org/wiki/포함-배제의_원리
- http://en.wikipedia.org/wiki/derangement
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)