"초타원 시그마 함수(hyperelliptic sigma functions)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query=” 문자열을 “” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “ * 구글 블로그 검색<br> ** http://blogsearch.google.com/blogsearch?q=” 문자열을 “” 문자열로) |
||
111번째 줄: | 111번째 줄: | ||
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math] | * [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math] | ||
− | |||
− |
2012년 11월 2일 (금) 07:56 판
이 항목의 수학노트 원문주소
개요
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문과 에세이
- The Weierstrass Theory For Elliptic Functions Including The Generalisation To Higher Genus
- Hyperelliptic Kleinian functions and applications http://arxiv.org/abs/solv-int/9603005
관련논문
- Kodama, Yuji, Shigeki Matsutani, and Emma Previato. 2010. “Quasi-periodic and periodic solutions of the Toda lattice via the hyperelliptic sigma function.” 1008.0509 (August 3). http://arxiv.org/abs/1008.0509 .
- Eilbeck, J C, V Z Enolski, and J Gibbons. 2010. Sigma, tau and Abelian functions of algebraic curves. Journal of Physics A: Mathematical and Theoretical 43, no. 45 (11): 455216. doi:10.1088/1751-8113/43/45/455216.
- Braden, Harry W, Victor Z Enolskii, and Andrew N. W Hone. 2005. “Bilinear recurrences and addition formulae for hyperelliptic sigma functions.” math/0501162 (January 11). http://arxiv.org/abs/math/0501162 .
- Matsutani, Shigeki. 2002. “Elliptic and hyperelliptic solutions of discrete Painlevé I and its extensions to higher order difference equations”. Physics Letters A 300 (2-3) (7월 29): 233-242. doi:16/S0375-9601(02)00784-3.
- Ônishi, Yoshihiro. 2001. “Determinant Expressions for Hyperelliptic Functions (with an Appendix by Shigeki Matsutani)”. math/0105189 (5월 23). http://arxiv.org/abs/math/0105189 .
- Matsutani, Shigeki. 2000. Hyperelliptic Solutions of KdV and KP equations: Reevaluation of Baker's Study on Hyperelliptic Sigma Functions. nlin/0007001 (July 1). doi:doi:10.1088/0305-4470/34/22/312. http://arxiv.org/abs/nlin/0007001.
- http://www.jstor.org/action/doBasicSearch?Query=
- http://www.ams.org/mathscinet
- http://dx.doi.org/