"코테베그-드 브리스 방정식(KdV equation)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지의 이름을 코테베그-드 브리스 방정식(KdV equation)로 바꾸었습니다.)
37번째 줄: 37번째 줄:
 
 
 
 
  
<h5>코르테베그-드 브리스 방정식 (KdV equation)</h5>
+
<h5>코테베그-드 브리스 방정식 (KdV equation)</h5>
  
 
* <math>u_{xxx}=u_t+6uu_x</math>
 
* <math>u_{xxx}=u_t+6uu_x</math>
89번째 줄: 89번째 줄:
  
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
* 발음사전 http://www.forvo.com/search/Korteweg
+
* 발음사전<br>
 +
**  http://www.forvo.com/search/Korteweg
 +
** http://www.forvo.com/search/de%20vries/nl/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
103번째 줄: 105번째 줄:
 
* [http://ko.wikipedia.org/wiki/%EC%86%94%EB%A6%AC%ED%86%A4 http://ko.wikipedia.org/wiki/솔리톤]
 
* [http://ko.wikipedia.org/wiki/%EC%86%94%EB%A6%AC%ED%86%A4 http://ko.wikipedia.org/wiki/솔리톤]
 
* http://en.wikipedia.org/wiki/John_Scott_Russell
 
* http://en.wikipedia.org/wiki/John_Scott_Russell
* http://en.wikipedia.org/wiki/
 
* http://www.proofwiki.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
  
 
 
 
 
117번째 줄: 113번째 줄:
  
 
* [http://kasmana.people.cofc.edu/SOLITONPICS/index.html An Introduction to Solitons] ,Alex Kasman
 
* [http://kasmana.people.cofc.edu/SOLITONPICS/index.html An Introduction to Solitons] ,Alex Kasman
 
 
 
 
 
 
 
<h5>관련논문</h5>
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5>관련도서</h5>
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
<h5>관련기사</h5>
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
<h5>링크</h5>
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 
* [http://www.exampleproblems.com/ exampleproblems.com]
 

2012년 1월 12일 (목) 08:21 판

이 항목의 스프링노트 원문주소

 

 

개요
  • any localized nonlinear wave which interacts with another (arbitrary) local disturbance and always regains asymptotically its exact initial shape and velocity (allowing for a possible phase shift)
  • Solitons were discovered experimentally (Russell 1844)
  • analytically (Korteweg & de Vries, 1895)
    • modelling of Russell's discovery
    • 1-soliton solution
  • numerically (Zabusky & Kruskal 1965).
    • interaction of two 1-soliton solutions
    • they discovered that solitons of differenct sizes interact cleanly

 

 

러셀(John Scott Russell)의 관찰 
  • Using a wave tank, he demonstrated four facts
    • First, solitary waves have a hyperbolic secant shape.
    • Second, a sufficiently large initial mass of water produces two or more independent solitary waves.
    • Third, solitary waves cross each other “without change of any kind.”
    • Finally, a wave of height h and traveling in a channel of depth d has a velocity given by the expression (where g is the acceleration of gravity), implying that a large amplitude solitary wave travels faster than one of low amplitude.

 

 

 

코테베그-드 브리스 방정식 (KdV equation)
  • \(u_{xxx}=u_t+6uu_x\)
  • 1-soliton 해의 유도

\(u(x,t)=f(x-ct)\)로 두자.

\(f'''= 6ff'-cf'\)

\(f''=3f^2-cf+b\)

\(f''f'=(3f^2-cf+b)f'\)

\(\frac{1}{2}(f')^2=f^3-\frac{c}{2}f^2+bf+a\)

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

리뷰