"쿰머의 24개 초기하 미분방정식의 해"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지를 개설하였습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
+ | <h5 style="margin: 0px; line-height: 2em;">이 항목의 수학노트 원문주소</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>개요</h5> | ||
+ | |||
+ | * <math>0,1,\infty</math> 각 세 점에서의 급수해를 통해 서로 다른 여섯개의 해를 얻고, [[오일러-가우스 초기하함수2F1|오일러-가우스 초기하함수]]에 서술된 오일러 변환을 통해 각 해의 여섯가지 표현을 얻어 24개를 얻는다<br> | ||
+ | * <math>z=0</math>에서의 급수해<br><math>_2F_1(a,b;c;z)</math><br><math>z^{1-c}{}_2F_1(b+1-c,a+1-c;2-c;z)</math><br> | ||
+ | * <math>z=1</math>에서의 급수해<br><math>_2F_1(a,b;a+b+1-c;1-z)</math><br><math>(1-z)^{c-a-b}{}_2F_1(c-a,c-b;c+1-a-b;1-z)</math><br> | ||
+ | * <math>z=\infty</math>에서의 급수해<br><math>z^{-a}{}_2F_1(a,a+1-c;a+1-b;z^{-1})</math><br><math>z^{-b}{}_2F_1(b+1-c,b;b+1-a;z^{-1})</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>재미있는 사실</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * Math Overflow http://mathoverflow.net/search?q= | ||
+ | * 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>역사</h5> | ||
+ | |||
+ | |||
+ | |||
+ | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
+ | * [[수학사연표 (역사)|수학사연표]] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>메모</h5> | ||
+ | |||
+ | * http://www.jstor.org/stable/1999448 | ||
+ | * http://prd.aps.org/pdf/PRD/v82/i10/e105007 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련된 항목들</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5> | ||
+ | |||
+ | * 단어사전<br> | ||
+ | ** http://www.google.com/dictionary?langpair=en|ko&q= | ||
+ | ** http://ko.wiktionary.org/wiki/ | ||
+ | * 발음사전 http://www.forvo.com/search/ | ||
+ | * [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br> | ||
+ | ** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr= | ||
+ | * [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교] | ||
+ | * [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>사전 형태의 자료</h5> | ||
+ | |||
+ | * http://ko.wikipedia.org/wiki/ | ||
+ | * http://en.wikipedia.org/wiki/ | ||
+ | * [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] | ||
+ | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | ||
+ | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>리뷰논문과 에세이</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련논문</h5> | ||
+ | |||
+ | * [http://users.ugent.be/%7Ejvdjeugt/files/tex/kummer2.pdf The finite group of the Kummer solutions]<br> | ||
+ | ** S. Lievens, K. Srinivasa Rao and J. Van der Jeugt, 200? | ||
+ | * [http://www.jstor.org/stable/2975319 On the Kummer Solutions of the Hypergeometric Equation]<br> | ||
+ | ** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543 | ||
+ | * [http://www.jstor.org/stable/1999448 On Kummer's Twenty-Four Solutions of the Hypergeometric Differential Equation]<br> | ||
+ | ** B. DworkTransactions of the American Mathematical Society, Vol. 285, No. 2 (Oct., 1984), pp. 497-521 | ||
+ | |||
+ | * http://www.jstor.org/action/doBasicSearch?Query= | ||
+ | * http://www.ams.org/mathscinet | ||
+ | * http://dx.doi.org/ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>관련도서</h5> | ||
+ | |||
+ | * 도서내검색<br> | ||
+ | ** http://books.google.com/books?q= | ||
+ | ** http://book.daum.net/search/contentSearch.do?query= | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>링크</h5> | ||
+ | |||
+ | * [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math] | ||
+ | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q= |
2011년 6월 28일 (화) 08:22 판
이 항목의 수학노트 원문주소
개요
- \(0,1,\infty\) 각 세 점에서의 급수해를 통해 서로 다른 여섯개의 해를 얻고, 오일러-가우스 초기하함수에 서술된 오일러 변환을 통해 각 해의 여섯가지 표현을 얻어 24개를 얻는다
- \(z=0\)에서의 급수해
\(_2F_1(a,b;c;z)\)
\(z^{1-c}{}_2F_1(b+1-c,a+1-c;2-c;z)\) - \(z=1\)에서의 급수해
\(_2F_1(a,b;a+b+1-c;1-z)\)
\((1-z)^{c-a-b}{}_2F_1(c-a,c-b;c+1-a-b;1-z)\) - \(z=\infty\)에서의 급수해
\(z^{-a}{}_2F_1(a,a+1-c;a+1-b;z^{-1})\)
\(z^{-b}{}_2F_1(b+1-c,b;b+1-a;z^{-1})\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문과 에세이
관련논문
- The finite group of the Kummer solutions
- S. Lievens, K. Srinivasa Rao and J. Van der Jeugt, 200?
- On the Kummer Solutions of the Hypergeometric Equation
- Reese T. Prosser, The American Mathematical Monthly, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543
- On Kummer's Twenty-Four Solutions of the Hypergeometric Differential Equation
- B. DworkTransactions of the American Mathematical Society, Vol. 285, No. 2 (Oct., 1984), pp. 497-521
관련도서