"쿰머의 24개 초기하 미분방정식의 해"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
38번째 줄: | 38번째 줄: | ||
− | <h5>메모</h5> | + | <h5>메모[http://www.jstor.org/stable/1999448 ]</h5> |
− | |||
* http://prd.aps.org/pdf/PRD/v82/i10/e105007 | * http://prd.aps.org/pdf/PRD/v82/i10/e105007 | ||
75번째 줄: | 74번째 줄: | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] | * [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics] | ||
− | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions] | + | * [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]<br> |
+ | ** http://dlmf.nist.gov/15.10#ii | ||
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | * [http://eqworld.ipmnet.ru/ The World of Mathematical Equations] | ||
95번째 줄: | 95번째 줄: | ||
** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543 | ** Reese T. Prosser, <cite style="line-height: 2em;">The American Mathematical Monthly</cite>, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543 | ||
* [http://www.jstor.org/stable/1999448 On Kummer's Twenty-Four Solutions of the Hypergeometric Differential Equation]<br> | * [http://www.jstor.org/stable/1999448 On Kummer's Twenty-Four Solutions of the Hypergeometric Differential Equation]<br> | ||
− | ** B. | + | ** B. Dwork, Transactions of the American Mathematical Society, Vol. 285, No. 2 (Oct., 1984), pp. 497-521 |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= |
2011년 6월 28일 (화) 09:52 판
이 항목의 수학노트 원문주소
개요
- \(0,1,\infty\) 각 세 점에서의 급수해를 통해 서로 다른 여섯개의 해를 얻고, 오일러-가우스 초기하함수에 서술된 오일러 변환을 통해 각 해의 여섯가지 표현을 얻어 24개를 얻는다
- \(z=0\)에서의 급수해
\(_2F_1(a,b;c;z)\)
\(z^{1-c}{}_2F_1(b+1-c,a+1-c;2-c;z)\) - \(z=1\)에서의 급수해
\(_2F_1(a,b;a+b+1-c;1-z)\)
\((1-z)^{c-a-b}{}_2F_1(c-a,c-b;c+1-a-b;1-z)\) - \(z=\infty\)에서의 급수해
\(z^{-a}{}_2F_1(a,a+1-c;a+1-b;z^{-1})\)
\(z^{-b}{}_2F_1(b+1-c,b;b+1-a;z^{-1})\)
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모[1]
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문과 에세이
관련논문
- The finite group of the Kummer solutions
- S. Lievens, K. Srinivasa Rao and J. Van der Jeugt, 200?
- On the Kummer Solutions of the Hypergeometric Equation
- Reese T. Prosser, The American Mathematical Monthly, Vol. 101, No. 6 (Jun. - Jul., 1994), pp. 535-543
- On Kummer's Twenty-Four Solutions of the Hypergeometric Differential Equation
- B. Dwork, Transactions of the American Mathematical Society, Vol. 285, No. 2 (Oct., 1984), pp. 497-521
관련도서