"페론-프로베니우스 정리 (Perron-Frobenius theorem)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
7번째 줄: | 7번째 줄: | ||
− | + | ==개요</h5> | |
* <em>A</em> = (<em>a</em><sub><em>ij</em></sub>) 가 <em>n</em> × <em>n</em> 양행렬, 즉 1 ≤ <em>i</em>, <em>j</em> ≤ <em>n </em> 에 대하여 <em>a</em><sub><em>ij</em></sub> > 0 가 성립한다고 가정하자 | * <em>A</em> = (<em>a</em><sub><em>ij</em></sub>) 가 <em>n</em> × <em>n</em> 양행렬, 즉 1 ≤ <em>i</em>, <em>j</em> ≤ <em>n </em> 에 대하여 <em>a</em><sub><em>ij</em></sub> > 0 가 성립한다고 가정하자 | ||
17번째 줄: | 17번째 줄: | ||
− | + | ==예</h5> | |
카르탄 행렬 <math>\mathcal{C}(A_5)</math> 의 역행렬은 | 카르탄 행렬 <math>\mathcal{C}(A_5)</math> 의 역행렬은 | ||
33번째 줄: | 33번째 줄: | ||
− | + | ==브라우어 부동점 정리의 응용</h5> | |
<math>A\geq 0</math> : non-negative 행렬 | <math>A\geq 0</math> : non-negative 행렬 | ||
95번째 줄: | 95번째 줄: | ||
− | + | ==역사</h5> | |
106번째 줄: | 106번째 줄: | ||
− | + | ==메모</h5> | |
* [http://people.ciram.unibo.it/%7Esgallari/Meetings/Matrix_day/benzi.ps http://people.ciram.unibo.it/~sgallari/Meetings/Matrix_day/benzi.ps] | * [http://people.ciram.unibo.it/%7Esgallari/Meetings/Matrix_day/benzi.ps http://people.ciram.unibo.it/~sgallari/Meetings/Matrix_day/benzi.ps] | ||
115번째 줄: | 115번째 줄: | ||
− | + | ==관련된 항목들</h5> | |
* [[inverse positive matrix]] | * [[inverse positive matrix]] | ||
142번째 줄: | 142번째 줄: | ||
− | + | ==매스매티카 파일 및 계산 리소스</h5> | |
* https://docs.google.com/file/d/0B8XXo8Tve1cxTGpWWGN0dGhudUU/edit?pli=1 | * https://docs.google.com/file/d/0B8XXo8Tve1cxTGpWWGN0dGhudUU/edit?pli=1 | ||
157번째 줄: | 157번째 줄: | ||
− | + | ==사전 형태의 자료</h5> | |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
170번째 줄: | 170번째 줄: | ||
− | + | ==리뷰논문, 에세이, 강의노트</h5> | |
* [http://www.imsc.res.in/%7Esunder/pf.pdf http://www.imsc.res.in/~sunder/pf.pdf]<br> | * [http://www.imsc.res.in/%7Esunder/pf.pdf http://www.imsc.res.in/~sunder/pf.pdf]<br> | ||
181번째 줄: | 181번째 줄: | ||
− | + | ==관련논문</h5> | |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
191번째 줄: | 191번째 줄: | ||
− | + | ==관련도서</h5> | |
* Henryk Minc, Nonnegative matrices, John Wiley&Sons, New York, 1988, ISBN 0-471-83966-3 | * Henryk Minc, Nonnegative matrices, John Wiley&Sons, New York, 1988, ISBN 0-471-83966-3 |
2012년 11월 1일 (목) 05:49 판
이 항목의 수학노트 원문주소
==개요
- A = (aij) 가 n × n 양행렬, 즉 1 ≤ i, j ≤ n 에 대하여 aij > 0 가 성립한다고 가정하자
- 다음이 성립한다
- A의 고유값 \(r>0\) 이 존재하여, 다른 고유값 λ에 대하여 부등식 |λ| < r가 성립한다.
- r 에 대응되는 고유벡터공간은 1차원이다
- r에 대응되는 모든 성분이 양수인 고유벡터 v = (v1,…,vn) 가 존재한다. 즉 A v = r v, 1 ≤ i ≤ n 에 대하여 vi > 0 이 성립하도록 하는 v를 찾을수 있다
- A의 고유값 \(r>0\) 이 존재하여, 다른 고유값 λ에 대하여 부등식 |λ| < r가 성립한다.
==예
카르탄 행렬 \(\mathcal{C}(A_5)\) 의 역행렬은
\(\left( \begin{array}{ccccc} \frac{5}{6} & \frac{2}{3} & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\ \frac{2}{3} & \frac{4}{3} & 1 & \frac{2}{3} & \frac{1}{3} \\ \frac{1}{2} & 1 & \frac{3}{2} & 1 & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} & 1 & \frac{4}{3} & \frac{2}{3} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & \frac{5}{6} \end{array} \right)\)로 양행렬이다.
이 행렬의 고유값은 \(2+\sqrt{3},1,\frac{1}{2},\frac{1}{3},2-\sqrt{3}\)로 주어진다.
벡터 \(\left( \begin{array}{c} 1 \\ \sqrt{3} \\ 2 \\ \sqrt{3} \\ 1 \end{array} \right)\) 는 고유값이 \(2+\sqrt{3}\)인 고유벡터이다.
==브라우어 부동점 정리의 응용
\(A\geq 0\) : non-negative 행렬
\(\sigma(A)\) : A 의 spectrum, 즉 A의 고유값의 집합 \(\sigma(A)=\{\lambda_1,\cdots, \lambda_{k}\}\)
\(\rho(A)\) : A 의 spectral radius, \(\{|\lambda_1|,\cdots, |\lambda_{k}|\}\) 에서의 최대값
\(\|\mathbf{x}\|_{1}\) : L^1-norm of x, 즉 \(\mathbf{x}=(x_1,\cdots, x_k)\) 이면, \(\|\mathbf{x}\|_{1}=|x_1|+\cdots+|x_k|\)
(정리)
\(\rho(A)\) 는 A의 고유값이며, \(\mathbf{x}\geq 0\) 인 고유벡터가 존재한다.
(증명)
\(K =\{\mathbf{x}\in\mathbb{R}^n|\mathbf{x}\geq 0,\|\mathbf{x}\|_{1}=1, A\mathbf{x}\geq \rho(A)\mathbf{x}\}\) 라 두자.
\(\lambda\) 를 \(|\lambda|=\rho(A)\) 를 만족시키는 A의 고유값이라 하고, \(\mathbf{v}\) 를 대응되는 고유벡터라 두자. \(\|\mathbf{v}\|_{1}=1\) 로 둘 수 있다.
\(\rho(A)|\mathbf{v}|=|\lambda \mathbf{v}|=|A \mathbf{v}|\leq A|\mathbf{v}|\) 이므로, \(|\mathbf{v}|\in K\) 이고, K는 공집합이 아니다.
따라서 K는 compact, convex, non-empty.
이제 두 가지 경우로 나눌 수 있다.
(1) \(A\mathbf{x} = 0\) 인 \(\mathbf{x}\in K\)가 존재하는 경우
(2) 모든 \(\mathbf{x}\in K\) 에 대하여 \(A\mathbf{x} \neq 0\) 가 성립하는 경우
(1) 의 경우는, \(\rho(A)=0\) 이 되어 증명이 끝난다.
(2) 의 경우를 생각하자.
\(f : K\to \mathbb{R}^{n}\) 을 \(f(\mathbf{x})=\frac{A\mathbf{x}}{\|A\mathbf{x}\|_1}\) 로 정의하자.
\(f(\mathbf{x})\geq 0\), \(\|f(\mathbf{x})\|_{1}=1\) 임을 쉽게 알 수 있다. 또한,
\(Af(\mathbf{x})=\frac{A (A\mathbf{x})}{\|A\mathbf{x}\|_1}\geq \frac{A (\rho(A)\mathbf{x})}{\|A\mathbf{x}\|_1}=\rho(A)f(\mathbf{x})\) 이므로, \(f(K)\subseteq K\).
따라서 브라우어 부동점 정리 에 의해, \(f(\mathbf{y})=\mathbf{y}\) 인 \(\mathbf{y}\in K\) 가 존재한다.
\(f(\mathbf{y})=\frac{A\mathbf{y}}{\|A\mathbf{y}\|_1}=\mathbf{y}\) 이므로, \(\|A\mathbf{y}\|_1}=r\) 로 두면, \(A\mathbf{y}=r\mathbf{y}\) 이다.
또한 \(\mathbf{y}\in K\) 이므로, \(A\mathbf{y}=r\mathbf{y}\geq \rho(A)\mathbf{y}\).
따라서 \(r=\rho(A)\)은 A의 고유값이며, \(\mathbf{y}\geq 0\) 는 대응되는 고유벡터이다. ■
==역사
==메모
- http://people.ciram.unibo.it/~sgallari/Meetings/Matrix_day/benzi.ps
- Math Overflow http://mathoverflow.net/search?q=
==관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
==매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxTGpWWGN0dGhudUU/edit?pli=1
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
==사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Perron–Frobenius_theorem
- http://en.wikipedia.org/wiki/Nonnegative_matrix
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
==리뷰논문, 에세이, 강의노트
- http://www.imsc.res.in/~sunder/pf.pdf
- 페론-프로베니우스 in graph theory, fusion algebra, ...
==관련논문
==관련도서
- Henryk Minc, Nonnegative matrices, John Wiley&Sons, New York, 1988, ISBN 0-471-83966-3
- 도서내검색