"포락선(envelope)과 curve stitching"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
(피타고라스님이 이 페이지에 _envelope_curve_stitching2.gif 파일을 등록하셨습니다.)
1번째 줄: 1번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소</h5>
 +
 +
* [[포락선(envelope)과 curve stitching]]
  
 
 
 
 
8번째 줄: 10번째 줄:
  
 
* "one-parameter family 에 있는 모든 곡선에 적어도 한 점에서 접하는 성질을 갖는" 곡선
 
* "one-parameter family 에 있는 모든 곡선에 적어도 한 점에서 접하는 성질을 갖는" 곡선
이러한 곡선을 주어진 곡선의 family에 대한 [http://en.wikipedia.org/wiki/Envelope_%28mathematics%29 envelope] 이라 부른다.<br>
+
이를 주어진 곡선의 family에 대한 [http://en.wikipedia.org/wiki/Envelope_%28mathematics%29 envelope] 이라 부른다.<br>
* Curve Stitching 또는 String Art 라는 이름으로 불림
+
* 이러한 방식으로 얻어지는 그림들을 curve stitching 또는 string art 라는 이름으로 부르기도 함
  
 
 
 
 
18번째 줄: 20번째 줄:
  
 
* 곡선들이 파라메터 t 에 의해 <math>F(x,y,t)=0</math> 로 주어진다고 가정하자.
 
* 곡선들이 파라메터 t 에 의해 <math>F(x,y,t)=0</math> 로 주어진다고 가정하자.
*  envelope은 다음 연립방정식을 풀어 얻을 수 있다.<br><math>\left\{ \begin{array}{c}  F(x,y,t)=0 \\ \frac{\partial F}{\partial t}(x,y,t)=0 \end{array} \right.</math><br>
+
*  envelope은 다음 연립방정식에서 t를 소거하여 얻을 수 있다.<br><math>\left\{ \begin{array}{c}  F(x,y,t)=0 \\ \frac{\partial F}{\partial t}(x,y,t)=0 \end{array} \right.</math><br>
  
 
 
 
 
40번째 줄: 42번째 줄:
 
<math>F_{x}(x(t_0),y(t_0),t_0)x'(t_0)+F_{y}(x(t_0),y(t_0),t_0)y'(t_0)+F_t(x(t_0),y(t_0),t_0)=0</math> 이므로, <math>F_t(x(t_0),y(t_0),t_0)=0</math>가 성립한다.
 
<math>F_{x}(x(t_0),y(t_0),t_0)x'(t_0)+F_{y}(x(t_0),y(t_0),t_0)y'(t_0)+F_t(x(t_0),y(t_0),t_0)=0</math> 이므로, <math>F_t(x(t_0),y(t_0),t_0)=0</math>가 성립한다.
  
임의의 <math>t=t_0</math>에 대하여 성립하므로, 포락선의
+
임의의 <math>t=t_0</math>에 대하여 성립하므로, 포락선의 매개방정식 <math>\mathbf{r}(t)=(x(t),y(t))</math>은 연립방정식
  
<math>\left\{ \begin{array}{c} F(x,y,t)=0 \\ \frac{\partial F}{\partial t}(x,y,t)=0 \end{array} \right.</math>
+
<math>\left\{ \begin{array}{c} F(x(t),y(t),t)=0 \\\frac{\partial F}{\partial t}(x(t),y(t),t)=0 \end{array} \right.</math>
  
 
+
을 만족시킨다. ■
  
 
 
 
 
69번째 줄: 71번째 줄:
 
<h5>예2: 어떤 타원들의 envelope</h5>
 
<h5>예2: 어떤 타원들의 envelope</h5>
  
파라메터 t에 대하여 다음과 같은 타원들이 주어진다고 하자<br><math>\frac{x^2}{t^2}+\frac{y^2}{(1-t)^2}=1</math><br>
+
파라메터 <math>0<t<1</math>에 대하여 다음과 같은 타원들이 주어진다고 하자<br><math>\frac{x^2}{t^2}+\frac{y^2}{(1-t)^2}=1</math><br>
 
* <math>F(x,y,t)=(t-1)^2 (t-x) (t+x)-t^2 y^2</math>
 
* <math>F(x,y,t)=(t-1)^2 (t-x) (t+x)-t^2 y^2</math>
 
* <math>F_{t}(x,y,t)=-2 \left(2 t^3-3 t^2-t x^2-t y^2+t+x^2\right)</math>
 
* <math>F_{t}(x,y,t)=-2 \left(2 t^3-3 t^2-t x^2-t y^2+t+x^2\right)</math>
 
* <math>\left\{ \begin{array}{c}  F(x,y,t)=0 \\ \frac{\partial F}{\partial t}(x,y,t)=0 \end{array} \right.</math> 으로부터 다음의 두 관계식을 얻을 수 있다<br><math>\left\{ \begin{array}{c} y^2=(1-t)^3 \\ x^2=t^3 \end{array}</math><br>
 
* <math>\left\{ \begin{array}{c}  F(x,y,t)=0 \\ \frac{\partial F}{\partial t}(x,y,t)=0 \end{array} \right.</math> 으로부터 다음의 두 관계식을 얻을 수 있다<br><math>\left\{ \begin{array}{c} y^2=(1-t)^3 \\ x^2=t^3 \end{array}</math><br>
 
* t를 소거하면 <math>x^{2/3}+y^{2/3}=1</math> 를 얻는다.
 
* t를 소거하면 <math>x^{2/3}+y^{2/3}=1</math> 를 얻는다.
* 이는 [[애스트로이드 (astroid)]] 가 된다
+
* 이는 [[애스트로이드 (astroid)]] 가 된다<br>[/pages/9431928/attachments/6220850 _envelope_curve_stitching2.gif]<br>
  
 
 
 
 
  
 
 
 
 
 
<h5>역사</h5>
 
  
 
 
 
 
  
* http://www.google.com/search?hl=en&tbs=tl:1&q=
+
<h5>심장형 곡선</h5>
* [[수학사연표 (역사)|수학사연표]]
 
  
 
+
* [[심장형 곡선(cardioid)]]<br>[/pages/10483216/attachments/5766946 심장형_곡선(cardioid)2.gif]<br>
  
 
 
 
 
 
<h5>메모</h5>
 
 
http://playingwithmathematica.com/2011/04/27/curve-stitching-with-mathematica/
 
 
http://britton.disted.camosun.bc.ca/string_art/jbstringart.htm
 
 
http://www.wikihow.com/Create-a-Line-Design
 
  
 
 
 
 
  
베지에 곡선
+
<h5>역사</h5>
 
 
http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Quadratic_curves
 
  
 
 
 
 
  
 
+
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
+
* [[수학사연표 (역사)|수학사연표]]
 
 
 
parabolic line construction
 
 
 
http://demonstrations.wolfram.com/CircleChordEnvelope/
 
  
 
 
 
 
119번째 줄: 103번째 줄:
 
 
 
 
  
envelope
+
<h5>메모</h5>
 
 
[http://en.wikipedia.org/wiki/Envelope_%28mathematics%29 http://en.wikipedia.org/wiki/Envelope_(mathematics)]
 
 
 
http://jwilson.coe.uga.edu/Texts.Folder/Envel/envelopes.html
 
 
 
 
 
 
 
envelope equation
 
 
 
http://www.sjsu.edu/faculty/watkins/envelopetheo.htm
 
 
 
 
 
 
 
Envelopes and String Art (Gregory Quenell) http://faculty.plattsburgh.edu/gregory.quenell/pubpdf/stringart.pdf
 
  
* Math Overflow http://mathoverflow.net/search?q=
+
* http://playingwithmathematica.com/2011/04/27/curve-stitching-with-mathematica/
 +
* http://britton.disted.camosun.bc.ca/string_art/jbstringart.htm
 +
* http://www.wikihow.com/Create-a-Line-Design
 +
* 베지에 곡선
 +
* http://en.wikipedia.org/wiki/B%C3%A9zier_curve#Quadratic_curves
 +
* 예
 +
* parabolic line construction
 +
* http://demonstrations.wolfram.com/CircleChordEnvelope/
 +
* envelope
 +
* [http://en.wikipedia.org/wiki/Envelope_%28mathematics%29 http://en.wikipedia.org/wiki/Envelope_(mathematics)]
 +
* http://jwilson.coe.uga.edu/Texts.Folder/Envel/envelopes.html
 +
* envelope equation
 +
* http://www.sjsu.edu/faculty/watkins/envelopetheo.htm
 +
* Envelopes and String Art (Gregory Quenell) http://faculty.plattsburgh.edu/gregory.quenell/pubpdf/stringart.pdf
  
 
 
 
 

2012년 8월 2일 (목) 17:05 판

이 항목의 수학노트 원문주소

 

 

개요
  • "one-parameter family 에 있는 모든 곡선에 적어도 한 점에서 접하는 성질을 갖는" 곡선
  • 이를 주어진 곡선의 family에 대한 envelope 이라 부른다.
  • 이러한 방식으로 얻어지는 그림들을 curve stitching 또는 string art 라는 이름으로 부르기도 함

 

 

envelope 
  • 곡선들이 파라메터 t 에 의해 \(F(x,y,t)=0\) 로 주어진다고 가정하자.
  • envelope은 다음 연립방정식에서 t를 소거하여 얻을 수 있다.
    \(\left\{ \begin{array}{c} F(x,y,t)=0 \\ \frac{\partial F}{\partial t}(x,y,t)=0 \end{array} \right.\)

 

(증명)

포락선이 \(\mathbf{r}(t)=(x(t),y(t))\) 로 매개화되었다고 하자. \(F(x(t),y(t),t)=0\)가 성립한다.

 

주어진 \(t=t_0\)에 대하여, 포락선의 점은 \(\mathbf{r}'(t_0)=(x(t_0),y(t_0))\) 로 주어진다.

한편 점 \((x(t_0),y(t_0))\)에서, family의 곡선 \(F(x,y,t_0)=0\)에 대하여 \(\mathbf{n}(t_0)=\langle F_{x}(x(t_0),y(t_0),t_0),F_{y}(x(t_0),y(t_0),t_0) \rangle\)는 수직인 벡터가 된다.

따라서 \(\mathbf{r}'(t_0)=\langle x'(t_0),y'(t_0)\rangle\) 에 대하여 \(\mathbf{n}(t_0)\cdot \mathbf{r}'(t_0)=F_{x}(x(t_0),y(t_0),t_0)x'(t_0)+F_{y}(x(t_0),y(t_0),t_0)y'(t_0)=0\)이 성립한다.

 

\(F(x(t),y(t),t)=0\) 의 양변을 t로 미분하면,

\(F_{x}(x(t_0),y(t_0),t_0)x'(t_0)+F_{y}(x(t_0),y(t_0),t_0)y'(t_0)+F_t(x(t_0),y(t_0),t_0)=0\) 이므로, \(F_t(x(t_0),y(t_0),t_0)=0\)가 성립한다.

임의의 \(t=t_0\)에 대하여 성립하므로, 포락선의 매개방정식 \(\mathbf{r}(t)=(x(t),y(t))\)은 연립방정식

\(\left\{ \begin{array}{c} F(x(t),y(t),t)=0 \\\frac{\partial F}{\partial t}(x(t),y(t),t)=0 \end{array} \right.\)

을 만족시킨다. ■

 

 

예1
  • 파라메터 t에 대하여 다음과 같은 직선들을 생각하자
    \(\frac{x}{t}+\frac{y}{10-t}=1\)

[/pages/9431928/attachments/5587508 parabola1.gif]

  • 위에선 \(t=1,\cdots, 9\) 에 대한 그림을 그렸다
  • 그림을 보면, 이 직선들에 접하는 곡선이 나타나는 것을 관찰할 수 있다.
  • 포락선을 구하기 위해 위에서 언급한 결과를 이용하자
    \(F(x,y,t)=t^2 + t(y-x-10) + 10x\)
    \(\frac{\partial F(x,y,t)}{\partial t}=2t+ y-x-10\)
  • 따라서 envelope은 다음 두 방정식에서 t를 소거함으로써 얻을 수 있다.
    \(\left\{ \begin{array}{c} t^2 + t(y-x-10) + 10x=0 \\ 2t+ y-x-10=0 \end{array} \right.\)
  • 이로부터 \(x^2-2 x y-20 x+y^2-20 y+100=0\) 를 얻는다.
  • 이는 이차곡선(원뿔곡선) 으로 판별식 \(\Delta=b^2-4ac=4-4=0\) 인, 포물선이 된다.
    [/pages/9431928/attachments/5587494 parabola2.gif]

 

 

예2: 어떤 타원들의 envelope
  • 파라메터 \(0<t<1\)에 대하여 다음과 같은 타원들이 주어진다고 하자
    \(\frac{x^2}{t^2}+\frac{y^2}{(1-t)^2}=1\)
  • \(F(x,y,t)=(t-1)^2 (t-x) (t+x)-t^2 y^2\)
  • \(F_{t}(x,y,t)=-2 \left(2 t^3-3 t^2-t x^2-t y^2+t+x^2\right)\)
  • \(\left\{ \begin{array}{c} F(x,y,t)=0 \\ \frac{\partial F}{\partial t}(x,y,t)=0 \end{array} \right.\) 으로부터 다음의 두 관계식을 얻을 수 있다
    \(\left\{ \begin{array}{c} y^2=(1-t)^3 \\ x^2=t^3 \end{array}\)
  • t를 소거하면 \(x^{2/3}+y^{2/3}=1\) 를 얻는다.
  • 이는 애스트로이드 (astroid) 가 된다
    [/pages/9431928/attachments/6220850 _envelope_curve_stitching2.gif]

 

 

 

심장형 곡선

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서