"포물선"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
20번째 줄: | 20번째 줄: | ||
<h5>곡선의 방정식</h5> | <h5>곡선의 방정식</h5> | ||
− | * 중학교 과정에서는 <math>y=ax^2+bx+c</math>, <math>a\neq 0</math> | + | * 중학교 과정에서는 이차함수 <math>y=ax^2+bx+c</math>, <math>a\neq 0</math>의 그래프로 얻어지는 곡선 |
* 초점이 <math>(p,0)</math> 준선이 직선 <math>x=-p</math> 로 주어지는 포물선의 방정식은 <math>y^2=4px</math>이다 | * 초점이 <math>(p,0)</math> 준선이 직선 <math>x=-p</math> 로 주어지는 포물선의 방정식은 <math>y^2=4px</math>이다 | ||
41번째 줄: | 41번째 줄: | ||
* [[포락선(envelope)과 curve stitching]] 에서 등장한 곡선 <math>x^2-2 x y-20 x+y^2-20 y+100=0</math> 이 포물선임을 보이자. | * [[포락선(envelope)과 curve stitching]] 에서 등장한 곡선 <math>x^2-2 x y-20 x+y^2-20 y+100=0</math> 이 포물선임을 보이자. | ||
+ | * [[이차곡선과 회전변환]] | ||
+ | * 의 결과를 이용할 수 이 | ||
2012년 8월 4일 (토) 14:30 판
이 항목의 스프링노트 원문주소
개요
- 주어진 한 직선 \(l\)과 점\(P\) 에 대하여, 직선 \(l\)에서의 거리와 점\(P\)와의 거리가 같은 점들의 자취
- 여기서 주어진 직선을 준선, 점을 초점이라 한다.
- 원뿔을 모선과 평행하게 자른 단면에서 얻어지는 원뿔곡선의 하나
- 이차곡선의 하나
곡선의 방정식
- 중학교 과정에서는 이차함수 \(y=ax^2+bx+c\), \(a\neq 0\)의 그래프로 얻어지는 곡선
- 초점이 \((p,0)\) 준선이 직선 \(x=-p\) 로 주어지는 포물선의 방정식은 \(y^2=4px\)이다
광학적 성질
- 빛의 경로 문제
- [/pages/1981880/attachments/889380 p.r.jpg] (사진 출처 : 위키)
예
- 포락선(envelope)과 curve stitching 에서 등장한 곡선 \(x^2-2 x y-20 x+y^2-20 y+100=0\) 이 포물선임을 보이자.
- 이차곡선과 회전변환
- 의 결과를 이용할 수 이
포물선이라는 단어의 유래
- 던져진 물체가 그리는 자취를 포물선이라 한다
메모
- 여러 기하학적인 성질들
- 포물선과 그 초점을 지나는 임의의 직선이 만드는 두 교점을 지름의 양 끝으로 하는 원은 항상 준선에 접한다.
- <생활 속의 포물선>의 예시로 흔히 등장하는 빨랫줄이나 현수교의 곡선은, 사실 포물선이 아니다. (링크 참조.)
관련된 개념 및 나중에 더 배우게 되는 것들
- 이차곡선
- 미분
- 포물선에서 접선을 구하는 방법
- 적분
- 포물선 아래의 면적을 구하는 방법
관련있는 다른 과목
- 물리
- 중력
- 체육
- 공던지기