"포아송분포"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “==관련도서== * 도서내검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/contentSearch.do?query= * 도서검색<br> ** http://books.google.com/books?q= ** http://book.daum.net/search/mainSearch.d) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “* [http://math.dongascience.com/ 수학동아] * [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS] * [http://betterexplained.com/ BetterExplained]” 문자열을 “” 문자열로) |
||
109번째 줄: | 109번째 줄: | ||
** http://blogsearch.google.com/blogsearch?q= | ** http://blogsearch.google.com/blogsearch?q= | ||
* [http://navercast.naver.com/science/list 네이버 오늘의과학] | * [http://navercast.naver.com/science/list 네이버 오늘의과학] | ||
− | |||
− | |||
− |
2012년 11월 2일 (금) 07:23 판
이 항목의 스프링노트 원문주소
개요
- 확률변수 \(X\)가 \(\{0,1,2,\cdots\}\)에서 값을 가질때, 다음과 같은 확률질량함수를 갖는 확률분포
\(\text{Pr}(X=k)=f(k)=\frac{\lambda^k e^{-\lambda}}{k!}\) - 이항분포의 시행횟수 n이 매우 크고, 성공확률 p가 작은 경우 포아송분포로 근사가능
예
- 한시간 동안 평균 120명, 즉 1분간 평균 2명이 방문하는 장소가 있다고 하자. 1분을 단위시간으로 정하면, 1분간 방문하는 사람의 수는 \(\lambda=2\) 인 확률분포를 따른다고 말할 수 있다.
- 고객센터에서 1분당 받을 전화통화수의 모델링에 사용할 수 있다
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/푸아송_분포
- http://en.wikipedia.org/wiki/Poisson_distribution
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문