"폴리로그 함수(polylogarithm)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
48번째 줄: 48번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모</h5>
  
* [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$]<br>
 
**  D. J. Broadhurst, 1998<br>
 
* [http://arxiv.org/abs/alg-geom/9202022 Classical Polylogarithms]<br>
 
** Hain, Richard, 1992
 
*  The classical polylogarithms, algebraic K-theory and ζ. F. (n),<br>
 
** Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
 
* [http://arxiv.org/abs/math/0310062 Multiple Polylogarithms: A Brief Survey]<br>
 
** Authors: Douglas Bowman, David M. Bradley, 5 Oct 2003
 
 
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
 
* http://books.google.com/books?hl=ko&lr=&id=9G3nlZUDAhkC&oi=fnd&pg=PA391&dq=The+classical+polylogarithms,+algebraic+K-theory&ots=zst2m387di&sig=kNRuqZp_mUdFDXScW41qNbprgps#v=onepage&q=&f=false
  
67번째 줄: 59번째 줄:
  
 
* [[원주율의 BBP 공식|파이에 대한 BBP 공식]]<br>
 
* [[원주율의 BBP 공식|파이에 대한 BBP 공식]]<br>
 +
* [[로그 사인 적분 (log sine integrals)]]<br>
  
 
 
 
 
100번째 줄: 93번째 줄:
  
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문</h5>
 +
 +
* [http://arxiv.org/abs/math/0310062 Multiple Polylogarithms: A Brief Survey]<br>
 +
** Douglas Bowman, David M. Bradley, 5 Oct 2003
 +
* [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of $\zeta(3)$ and $\zeta(5)$]<br>
 +
**  D. J. Broadhurst, 1998<br>
  
 
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants]<br>
 
* [http://dx.doi.org/http://dx.doi.org/10.1090%2FS0025-5718-97-00856-9 On the rapid computation of various polylogarithmic constants]<br>
 
**  David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.<br>
 
**  David Bailey; Peter Borwein; Simon Plouffe.Journal: Math. Comp. 66 (1997), 903-913.<br>
 +
 +
* [http://arxiv.org/abs/alg-geom/9202022 Classical Polylogarithms]<br>
 +
** Hain, Richard, 1992
 +
*  The classical polylogarithms, algebraic K-theory and ζ. F. (n),<br>
 +
** Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135
 +
 
*  Some wonderful formulas ... an introduction to polylogarithms<br>
 
*  Some wonderful formulas ... an introduction to polylogarithms<br>
 
** A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286
 
** A.J. Van der Poorten, Queen's papers in Pure and Applied Mathematics, 54 (1979), 269-286

2010년 7월 12일 (월) 21:35 판

이 항목의 스프링노트 원문주소

 

 

개요

 

 

정의

\(\operatorname{Li}_r(z)= \sum_{n=1}^\infty {z^n \over n^r}=\int_0^z \operatorname{Li}_{r-1}(z) \frac{dt}{t}\)

\(\operatorname{Li}_3(z) =\int_0^z \operatorname{Li}_2(z) \frac{dt}{t}\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문
  • Classical Polylogarithms
    • Hain, Richard, 1992
  • The classical polylogarithms, algebraic K-theory and ζ. F. (n),
    • Goncharov, A. Proc. of the Gelfand Seminar, Birkhauser, 113-135

 

 

관련도서

 

 

관련기사

 

 

블로그